Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 5777, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707510

RESUMEN

Tumors experience temporal and spatial fluctuations in oxygenation. Hypoxia inducible transcription factors (HIF-α) respond to low levels of oxygen and induce re-supply oxygen. HIF-α stabilization is typically facultative, induced by hypoxia and reduced by normoxia. In some cancers, HIF-α stabilization becomes constitutive under normoxia. We develop a mathematical model that predicts how fluctuating oxygenation affects HIF-α stabilization and impacts net cell proliferation by balancing the base growth rate, the proliferative cost of HIF-α expression, and the mortality from not expressing HIF-α during hypoxia. We compare optimal net cell proliferation rate between facultative and constitutive HIF-α regulation in environments with different oxygen profiles. We find that that facultative HIF-α regulation promotes greater net cell proliferation than constitutive regulation with stochastic or slow periodicity in oxygenation. However, cell fitness is nearly identical for both HIF-α regulation strategies under rapid periodic oxygenation fluctuations. The model thus indicates that cells constitutively expressing HIF-α may be at a selective advantage when the cost of expression is low. In cancer, this condition is known as pseudohypoxia or the "Warburg Effect". We conclude that rapid and regular cycling of oxygenation levels selects for pseudohypoxia, and that this is consistent with the ecological theory of optimal defense.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia de la Célula , Modelos Biológicos , Oxígeno/metabolismo , Estabilidad Proteica , Procesos Estocásticos , Microambiente Tumoral
2.
PLoS Comput Biol ; 16(2): e1007672, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32101537

RESUMEN

Glioblastomas are aggressive primary brain tumors known for their inter- and intratumor heterogeneity. This disease is uniformly fatal, with intratumor heterogeneity the major reason for treatment failure and recurrence. Just like the nature vs nurture debate, heterogeneity can arise from intrinsic or environmental influences. Whilst it is impossible to clinically separate observed behavior of cells from their environmental context, using a mathematical framework combined with multiscale data gives us insight into the relative roles of variation from different sources. To better understand the implications of intratumor heterogeneity on therapeutic outcomes, we created a hybrid agent-based mathematical model that captures both the overall tumor kinetics and the individual cellular behavior. We track single cells as agents, cell density on a coarser scale, and growth factor diffusion and dynamics on a finer scale over time and space. Our model parameters were fit utilizing serial MRI imaging and cell tracking data from ex vivo tissue slices acquired from a growth-factor driven glioblastoma murine model. When fitting our model to serial imaging only, there was a spectrum of equally-good parameter fits corresponding to a wide range of phenotypic behaviors. When fitting our model using imaging and cell scale data, we determined that environmental heterogeneity alone is insufficient to match the single cell data, and intrinsic heterogeneity is required to fully capture the migration behavior. The wide spectrum of in silico tumors also had a wide variety of responses to an application of an anti-proliferative treatment. Recurrent tumors were generally less proliferative than pre-treatment tumors as measured via the model simulations and validated from human GBM patient histology. Further, we found that all tumors continued to grow with an anti-migratory treatment alone, but the anti-proliferative/anti-migratory combination generally showed improvement over an anti-proliferative treatment alone. Together our results emphasize the need to better understand the underlying phenotypes and tumor heterogeneity present in a tumor when designing therapeutic regimens.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Glioblastoma/diagnóstico por imagen , Glioblastoma/fisiopatología , Imagen por Resonancia Magnética , Animales , Proliferación Celular , Biología Computacional , Simulación por Computador , Humanos , Cinética , Masculino , Ratones Endogámicos NOD , Modelos Teóricos , Fenotipo , Ratas , Ratas Sprague-Dawley
3.
Sci Rep ; 9(1): 2425, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787363

RESUMEN

Tumors are not static masses of cells but dynamic ecosystems where cancer cells experience constant turnover and evolve fitness-enhancing phenotypes. Selection for different phenotypes may vary with (1) the tumor niche (edge or core), (2) cell turnover rates, (3) the nature of the tradeoff between traits, and (4) whether deaths occur in response to demographic or environmental stochasticity. Using a spatially-explicit agent-based model, we observe how two traits (proliferation rate and migration speed) evolve under different tradeoff conditions with different turnover rates. Migration rate is favored over proliferation at the tumor's edge and vice-versa for the interior. Increasing cell turnover rates slightly slows tumor growth but accelerates the rate of evolution for both proliferation and migration. The absence of a tradeoff favors ever higher values for proliferation and migration, while a convex tradeoff tends to favor proliferation, often promoting the coexistence of a generalist and specialist phenotype. A concave tradeoff favors migration at low death rates, but switches to proliferation at higher death rates. Mortality via demographic stochasticity favors proliferation, and environmental stochasticity favors migration. While all of these diverse factors contribute to the ecology, heterogeneity, and evolution of a tumor, their effects may be predictable and empirically accessible.


Asunto(s)
Evolución Biológica , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias/genética , Muerte Celular/genética , Aptitud Genética/genética , Humanos , Modelos Biológicos , Neoplasias/patología
4.
Cancer Res ; 78(8): 2127-2139, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29382708

RESUMEN

Treatment of advanced cancers has benefited from new agents that supplement or bypass conventional therapies. However, even effective therapies fail as cancer cells deploy a wide range of resistance strategies. We propose that evolutionary dynamics ultimately determine survival and proliferation of resistant cells. Therefore, evolutionary strategies should be used with conventional therapies to delay or prevent resistance. Using an agent-based framework to model spatial competition among sensitive and resistant populations, we applied antiproliferative drug treatments to varying ratios of sensitive and resistant cells. We compared a continuous maximum-tolerated dose schedule with an adaptive schedule aimed at tumor control via competition between sensitive and resistant cells. Continuous treatment cured mostly sensitive tumors, but with any resistant cells, recurrence was inevitable. We identified two adaptive strategies that control heterogeneous tumors: dose modulation controls most tumors with less drug, while a more vacation-oriented schedule can control more invasive tumors. These findings offer potential modifications to treatment regimens that may improve outcomes and reduce resistance and recurrence.Significance: By using drug dose modulation or treatment vacations, adaptive therapy strategies control the emergence of tumor drug resistance by spatially suppressing less fit resistant populations in favor of treatment sensitive ones. Cancer Res; 78(8); 2127-39. ©2018 AACR.


Asunto(s)
Antineoplásicos/uso terapéutico , Evolución Biológica , Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Biología Computacional , Humanos , Células MCF-7 , Dosis Máxima Tolerada , Neoplasias/patología , Fenotipo , Recurrencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...