Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(25): 7564-7571, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38809695

RESUMEN

Photocurrents play a crucial role in various applications, including light detection, photovoltaics, and THz radiation generation. Despite the abundance of methods and materials for converting light into electrical signals, the use of metals in this context has been relatively limited. Nanostructures supporting surface plasmons in metals offer precise light manipulation and induce light-driven electron motion. Through the inverse design optimization of a gold nanostructure, we demonstrate enhanced volumetric, unidirectional, intense, and ultrafast photocurrents via a magneto-optical process derived from the inverse Faraday effect. This is achieved through fine-tuning the amplitude, polarization, and gradients in the local light field. The virtually instantaneous process allows dynamic photocurrent modulation by varying optical pulse duration, potentially yielding nanosources of intense, ultrafast, planar magnetic fields and frequency-tunable THz emission. These findings open avenues for ultrafast magnetic material manipulation and hold promise for nanoscale THz spectroscopy.

2.
Materials (Basel) ; 16(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36984214

RESUMEN

Nanocrystals' (NCs) band gap can be easily tuned over the infrared range, making them appealing for the design of cost-effective sensors. Though their growth has reached a high level of maturity, their doping remains a poorly controlled parameter, raising the need for post-synthesis tuning strategies. As a result, phototransistor device geometry offers an interesting alternative to photoconductors, allowing carrier density control. Phototransistors based on NCs that target integrated infrared sensing have to (i) be compatible with low-temperature operation, (ii) avoid liquid handling, and (iii) enable large carrier density tuning. These constraints drive the search for innovative gate technologies beyond traditional dielectric or conventional liquid and ion gel electrolytes. Here, we explore lithium-ion glass gating and apply it to channels made of HgTe narrow band gap NCs. We demonstrate that this all-solid gate strategy is compatible with large capacitance up to 2 µF·cm-2 and can be operated over a broad range of temperatures (130-300 K). Finally, we tackle an issue often faced by NC-based phototransistors:their low absorption; from a metallic grating structure, we combined two resonances and achieved high responsivity (10 A·W-1 or an external quantum efficiency of 500%) over a broadband spectral range.

3.
Opt Express ; 31(26): 43147-43162, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178416

RESUMEN

The rise of metasurfaces to manipulate the polarization states of light motivates the development of versatile numerical methods able to model and analyze their polarimetric properties. Here we make use of a scattered-field formulation well suited to the Finite Element Method (FEM) to compute the Stokes-Mueller matrix of metasurfaces. The major advantage of the FEM lies in its versatility and its ability to compute the optical properties of structures with arbitrary and realistic shapes, and rounded edges and corners. We benefit from this method to design achiral, pseudo-chiral, and chiral metasurfaces with specific polarimetric properties. We compute and analyze their Mueller matrices. The accuracy of this method is assessed for both dielectric and metallic scatterers hosting Mie and plasmonic resonances.

4.
Soft Matter ; 18(25): 4792-4802, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35708225

RESUMEN

New collective optical properties have emerged recently from organized and oriented arrays of closely packed semiconducting and metallic nanoparticles (NPs). However, it is still challenging to obtain NP assemblies which are similar everywhere on a given sample and, most importantly, share a unique common orientation that would guarantee a unique behavior everywhere on the sample. In this context, by combining optical microscopy, fluorescence microscopy and synchrotron-based grazing incidence X-ray scattering (GISAXS) of assemblies of gold nanospheres and of fluorescent nanorods, we study the interactions between NPs and liquid crystal smectic topological defects that can ultimately lead to unique NP orientations. We demonstrate that arrays of one-dimensional - 1D (dislocations) and two-dimensional - 2D (grain boundaries) topological defects oriented along one single direction confine and organize NPs in closely packed networks but also orient both single nanorods and NP networks along the same direction. Through the comparison between smectic films associated with different kinds of topological defects, we highlight that the coupling between the NP ligands and the smectic layers below the grain boundaries may be necessary to allow for fixed NP orientation. This is in contrast with 1D defects, where the induced orientation of the NPs is intrinsically induced by the confinement independently of the ligand nature. We thus succeeded in achieving the fixed polarization of assemblies of single photon emitters in defects. For gold nanospheres confined in grain boundaries, a strict orientation of hexagonal networks has been obtained with the 〈10〉 direction strictly parallel to the defects. With such closely packed and oriented NPs, new collective properties are now foreseen.

5.
Nanoscale ; 14(7): 2711-2721, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35112698

RESUMEN

As nanocrystals (NCs) gain maturity, they become central building blocks for optoelectronics in devices such as solar cells and, more recently, infrared focal plane arrays. Now that the proof of concept of these devices has been established, their optimization requires a deeper understanding of their electronic and optical features to engineer their optoelectronic properties accurately. Though PbS NCs have been extensively investigated, the complex optical index of PbS NC thin films remains mostly unknown. Some previous works have unveiled the optical index for this type of material optimized for solar cells (excitonic peak at 940 nm), but longer wavelengths remain scarce and surface chemistry effects, which are known to be of central importance for layer doping, are simply unexplored. Here, we conduct a systematic investigation of the complex optical index of PbS NC thin films using broadband spectrally resolved ellipsometry. The obtained results are then compared with simulations combining tight-binding (TB) modeling at the NC level and the Bruggeman model to expand the results to the film scale. While TB calculation gives the NC optical indices, we extract the key NC film parameters such as the NC volume fraction and ligand indices by fitting the Bruggeman formula to ellipsometry measurements. We also bring evidence that this joint modeling method can be conducted without the need for ellipsometry data while preserving the main feature of the experimental results. Finally, the unveiled optical indices are used to model the absorption of short-wave infrared diode stacks based on PbS NCs and are relevant for state-of-the-art devices. Our electromagnetic modeling shows that the absorption within the contact is now a major limitation of the current device operated at the telecom wavelength.

6.
ACS Nano ; 16(1): 386-393, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34962766

RESUMEN

The inverse Faraday effect allows the generation of stationary magnetic fields through optical excitation only. This light-matter interaction in metals results from creating drift currents via nonlinear forces that light applies to the conduction electrons. Here, we describe the theory underlying the generation of drift currents in metals, particularly its application to photonic nanostructures using numerical simulations. We demonstrate that a gold photonic nanoantenna, optimized by a genetic algorithm, allows, under high excitation power, to maximize the drift currents and generate a pulse of stationary magnetic fields in the tesla range. This intense magnetic field, confined at the nanoscale and for a few femtoseconds, results from annular optical confinement and not from the creation of a single optical hot spot. Moreover, by controlling the incident polarization state, we demonstrate the orientation control of the created magnetic field and its reversal on demand. Finally, the stationary magnetic field's temporal behavior and the drift currents associated with it reveal the subcycle nature of this light-matter interaction. The manipulation of drift currents by a plasmonic nanostructure for the generation of stationary magnetic field pulses finds applications in the ultrafast control of magnetic domains with applications not only in data storage technologies but also in research fields such as magnetic trapping, magnetic skyrmion, magnetic circular dichroism, to spin control, spin precession, spin currents, and spin-waves, among others.

7.
Antibiotics (Basel) ; 11(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35052891

RESUMEN

Nosocomial and medical device-induced biofilm infections affect millions of lives and urgently require innovative preventive approaches. These pathologies have led to the development of numerous antimicrobial strategies, an emergent topic involving both natural and synthetic routes, among which some are currently under testing for clinical approval and use. Antimicrobial peptides (AMPs) are ideal candidates for this fight. Therefore, the strategies involving surface functionalization with AMPs to prevent bacterial attachment/biofilms formation have experienced a tremendous development over the last decade. In this review, we describe the different mechanisms of action by which AMPs prevent bacterial adhesion and/or biofilm formation to better address their potential as anti-infective agents. We additionally analyze AMP immobilization techniques on a variety of materials, with a focus on biomedical applications. Furthermore, we summarize the advances made to date regarding the immobilization strategies of AMPs on various surfaces and their ability to prevent the adhesion of various microorganisms. Progress toward the clinical approval of AMPs in antibiotherapy is also reviewed.

8.
Nano Lett ; 20(5): 3999-4006, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32283029

RESUMEN

To date, defect-tolerance electronic structure of lead halide perovskite nanocrystals is limited to an optical feature in the visible range. Here, we demonstrate that IR sensitization of formamidinium lead iodine (FAPI) nanocrystal array can be obtained by its doping with PbS nanocrystals. In this hybrid array, absorption comes from the PbS nanocrystals while transport is driven by the perovskite which reduces the dark current compared to pristine PbS. In addition, we fabricate a field-effect transistor using a high capacitance ionic glass made of hybrid FAPI/PbS nanocrystal arrays. We show that the hybrid material has an n-type nature with an electron mobility of 2 × 10-3 cm2 V-1 s-1. However, the dark current reduction is mostly balanced by a loss of absorption. To overcome this limitation, we couple the FAPI/PbS hybrid to a guided mode resonator that can enhance the infrared light absorption.

9.
Polymers (Basel) ; 12(1)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936092

RESUMEN

We investigate the adsorption of pH- or temperature-responsive polymer systems by ellipsometry and neutron reflectivity. To this end, temperature-responsive poly (N-isopropylacrylamide) (PNIPAM) brushes and pH-responsive poly (acrylic acid) (PAA) brushes have been prepared using the "grafting onto" method to investigate the adsorption process of polymers and its reversibility under controlled environment. To that purpose, macromolecular brushes were designed with various chain lengths and a wide range of grafting density. Below the transition temperature (LCST), the characterization of PNIPAM brushes by neutron reflectivity shows that the swelling behavior of brushes is in good agreement with the scaling models before they collapse above the LCST. The reversible adsorption on PNIPAM brushes was carried out with linear copolymers of N-isopropylacrylamide and acrylic acid, P(NIPAM-co-AA). While these copolymers remain fully soluble in water over the whole range of temperature investigated, a quantitative adsorption driven by solvophobic interactions was shown to proceed only above the LCST of the brush and to be totally reversible upon cooling. Similarly, the pH-responsive adsorption driven by electrostatic interactions on PAA brushes was studied with copolymers of NIPAM and N,N-dimethylaminopropylmethacrylamide, P(NIPAM-co-MADAP). In this case, the adsorption of weak polycations was shown to increase with the ionization of the PAA brush with interactions mainly located in the upper part of the brush at pH 7 and more deeply adsorbed within the brush at pH 9.

10.
Nano Lett ; 20(3): 1598-1606, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-31951415

RESUMEN

In this Letter, we show how advanced hierarchical structures of topological defects in the so-called smectic oily streaks can be used to sequentially transfer their geometrical features to gold nanospheres. We use two kinds of topological defects, 1D dislocations and 2D ribbon-like topological defects. The large trapping efficiency of the smectic dislocation cores not only surpasses that of the elastically distorted zones around the cores but also surpasses the one of the 2D ribbon-like topological defect. This enables the formation of a large number of aligned NP chains within the dislocation cores that can be quasi-fully filled without any significant aggregation outside of the cores. When the NP concentration is large enough to entirely fill the dislocation cores, the LC confinement varies from 1D to 2D. We demonstrate that the 2D topological defect cores induce a confinement that leads to planar hexagonal networks of NPs. We then draw the phase diagram driven by NP concentration, associated with the sequential confinements induced by these two kinds of topological defects. Owing to the excellent large-scale order of these defect cores, not only the NP chains but also the NP hexagonal networks can be oriented along the desired direction, suggesting a possible new route for the creation of either 1D or 2D highly anisotropic NP networks. In addition, these results open rich perspectives based on the possible creation of coexisting NP assemblies of different kinds, localized in different confining areas of a same smectic film that would thus interact thanks to their proximity but also would interact via the surrounding soft matter matrix.

11.
J Opt Soc Am A Opt Image Sci Vis ; 34(12): 2181-2188, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29240092

RESUMEN

We present an interface model based on two-scale homogenization to predict the coherent scattering of light by a periodic rough interface between air and a dielectric. Contrary to previous approaches where the roughnesses are replaced by a layer filled with an equivalent medium, our modeling yields effective jump conditions applying across the region containing the roughnesses. The validity of the model is inspected by comparison with direct numerics and with experimental measurements on an air/silicium rough interface near the Brewster angle. It is shown that the interface model reproduces accurately the shift in the Brewster phenomenon without any adjustable parameter, which is of practical importance in retrieval methods to get thickness or filling fraction with reliable physical values.

12.
ACS Nano ; 11(7): 6728-6738, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28640628

RESUMEN

We show that the use of oriented linear arrays of smectic A defects, the so-called smectic oily streaks, enables the orientation of gold nanorods (GNRs) for a large range of GNR diameters, ranging from 7 to 48 nm, and for various ligands. For the small GNRs it enables oriented end-to-end small chains of GNRs when the density is increased from around 2 GNRs/µm2 to around 6 GNRs/µm2. We have characterized the orientation of single GNRs by spectrophotometry and two-photon luminescence (TPL). A strongly anisotropic absorption of the composites and an on-off switching of GNR luminescence, both controlled by incident light polarization, are observed, revealing an orientation of the GNRs mostly parallel to the oily streaks. A more favorable trapping of GNRs by smectic dislocations with respect to ribbon-like defects is thus demonstrated. The dislocations appear to be localized at a specific localization, namely, the summit of rotating grain boundaries. Combining plasmonic absorption measurements, TPL measurements, and simulation of the plasmonic absorption, we show that the end-to-end GNR chains are both dimers and trimers, all parallel to each other, with a small gap between the coupled GNRs, on the order of 1.5 nm, thus associated with a large red-shift of 110 nm of the longitudinal plasmonic mode. A motion of the GNRs along the dislocations appears as a necessary ingredient for the formation of end-to-end GNR chains, the gap value being driven by the balance between the attracting van der Waals interactions and the steric repulsion between the GNRs and leading to interdigitation of the neighboring ligands. We thus obtain electromagnetic coupling of nanorods controlled by light polarization.

13.
ACS Nano ; 10(8): 7761-7, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27458790

RESUMEN

The photonic resonances hosted by nanostructures provide vivid colors that can be used as color filters instead of organic colors and pigments in photodetectors and printing technology. Metallic nanostructures have been widely studied due to their ability to sustain surface plasmons that resonantly interact with light. Most of the metallic nanoparticles behave as point-like electric multipoles. However, the needs of an another degree of freedom to tune the color of the photonic nanostructure together with the use of a reliable and cost-effective material are growing. Here, we report a technique to imprint colored images based on silicon nanoparticles that host low-order electric and magnetic Mie resonances. The interplay between the electric and magnetic resonances leads to a large palette of colors. This all-dielectric fabrication technique offers the advantage to use cost-effective, reliable, and sustainable materials to provide vivid color spanning the whole visible spectrum. The interest and potential of this all-dielectric printing technique are highlighted by reproducing at a micrometer scale a Mondrian painting.

14.
Soft Matter ; 12(3): 678-88, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26565648

RESUMEN

Combining optical microscopy, synchrotron X-ray diffraction and ellipsometry, we studied the internal structure of linear defect domains (oily streaks) in films of a smectic liquid crystal 8CB with thicknesses in the range of 100-300 nm. These films are confined between air and a rubbed PVA polymer substrate which imposes hybrid anchoring conditions (normal and unidirectional planar, respectively). We show how the presence or absence of dislocations controls the structure of highly deformed thin smectic films. Each domain contains smectic layers curved in the shape of flattened hemicylinders to satisfy both anchoring conditions, together with grain boundaries whose size and shape are controlled by the presence of dislocation lines. A flat grain boundary normal to the interface connects neighboring hemicylinders, while a rotating grain boundary (RGB) is located near the axis of curvature of the cylinders. The RGB shape appears such that dislocation lines are concentrated at its summit close to the air interface. The smectic layers reach the polymer substrate via a transition region where the smectic layer orientation satisfies the planar anchoring conditions over the entire polymer substrate and whose thickness does not depend on that of the film. The strength of planar anchoring appears to be high, larger than 10(-2) mJ m(-2), compensating for the high energy cost of creating an additional 2D defect between a horizontal smectic layer and perpendicular ones of the transition region. This 2D defect may be melted, in order to avoid the creation of a transition region structure composed of a large number of dislocations. As a result, linear defect domains can be considered as arrays of oriented defects, straight dislocations of various Burger vectors, whose location is now known, and 2D nematic defects. The possibility of easy variation between the present structure with a moderate amount of dislocations and a structure with a large number of dislocations is also demonstrated.


Asunto(s)
Compuestos de Bifenilo/química , Cristales Líquidos/química , Cristales Líquidos/ultraestructura , Nitrilos/química , Simulación por Computador , Modelos Químicos , Transición de Fase , Alcohol Polivinílico/química , Difracción de Rayos X
15.
Opt Express ; 22(19): 23182-91, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321787

RESUMEN

Local full Mueller matrix measurements in the Fourier plane of a microscope lens were used to determine the internal anisotropic ordering in periodic linear arrays of smectic liquid crystal defects, known as 'oily streaks'. We propose a single microstructure-dependent model taking into account the anisotropic dielectric function of the liquid crystal that reproduces the smectic layers orientation and organization in the oily streaks. The calculated Mueller matrix elements are compared to the measured data to reveal the anchoring mechanism of the smectic oily streaks on the substrate and evidence the presence of new type of defect arrangement. Beyond the scientific inquiry, the understanding and control of the internal structure of such arrays offer technological opportunities for developing liquid-crystal based sensors and self-assembled nanostructures.


Asunto(s)
Cristales Líquidos/química , Modelos Teóricos , Nanoestructuras/química , Anisotropía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...