Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Dev Cell ; 56(23): 3264-3275.e7, 2021 12 06.
Article En | MEDLINE | ID: mdl-34672971

Taxanes are widely used cancer chemotherapeutics. However, intrinsic resistance limits their efficacy without any actionable resistance mechanism. We have discovered a microtubule (MT) plus-end-binding CLIP-170 protein variant, hereafter CLIP-170S, which we found enriched in taxane-resistant cell lines and patient samples. CLIP-170S lacks the first Cap-Gly motif, forms longer comets, and impairs taxane access to its MT luminal binding site. CLIP-170S knockdown reversed taxane resistance in cells and xenografts, whereas its re-expression led to resistance, suggesting causation. Using a computational approach in conjunction with the connectivity map, we unexpectedly discovered that Imatinib was predicted to reverse CLIP-170S-mediated taxane resistance. Indeed, Imatinib treatment selectively depleted CLIP-170S, thus completely reversing taxane resistance. Other RTK inhibitors also depleted CLIP-170S, suggesting a class effect. Herein, we identify CLIP-170S as a clinically prevalent variant that confers taxane resistance, whereas the discovery of Imatinib as a CLIP-170S inhibitor provides novel therapeutic opportunities for future trials.


Drug Resistance, Neoplasm/genetics , Gene Deletion , Imatinib Mesylate/pharmacology , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/genetics , Neoplasm Recurrence, Local/drug therapy , Stomach Neoplasms/drug therapy , Taxoids/pharmacology , Animals , Antineoplastic Agents/pharmacology , Clinical Trials, Phase II as Topic , Female , Humans , Mice , Microtubules/drug effects , Microtubules/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tumor Cells, Cultured
2.
Commun Biol ; 4(1): 785, 2021 06 24.
Article En | MEDLINE | ID: mdl-34168263

Quantitation of androgen receptor variant (AR-V) expression in circulating tumor cells (CTCs) from patients with metastatic castration-resistant prostate cancer (mCRPC) has great potential for treatment customization. However, the absence of a uniform CTC isolation platform and consensus on an analytical assay has prevented the incorporation of these measurements in routine clinical practice. Here, we present a single-CTC sensitive digital droplet PCR (ddPCR) assay for the quantitation of the two most common AR-Vs, AR-V7, and AR-v567es, using antigen agnostic CTC enrichment. In a cohort of 29 mCRPC patients, we identify AR-V7 in 66% and AR-v567es in 52% of patients. These results are corroborated using another gene expression platform (NanoStringTM) and by analysis of RNA-Seq data from patients with mCRPC (SU2C- PCF Dream Team). We next quantify AR-V expression in matching EpCAM-positive vs EpCAM-negative CTCs, as EpCAM-based CTC enrichment is commonly used. We identify lower AR-V prevalence in the EpCAM-positive fraction, suggesting that EpCAM-based CTC enrichment likely underestimates AR-V prevalence. Lastly, using single CTC analysis we identify enrichment for AR-v567es in patients with neuroendocrine prostate cancer (NEPC) indicating that AR-v567es may be involved in lineage plasticity, which warrants further mechanistic interrogation.


Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics , Cell Line, Tumor , Humans , Male , Neoplasm Staging , Prostatic Neoplasms/chemistry , RNA-Seq , Receptors, Androgen/analysis , Receptors, Androgen/physiology
3.
Article En | MEDLINE | ID: mdl-33154984

PURPOSE: Androgen receptor splice variant 7 (AR-V7) detection in circulating tumor cells (CTCs) is associated with a low probability of response and short progression-free (PFS) and overall survival (OS) in men with metastatic castration-resistant prostate cancer (mCRPC) treated with enzalutamide or abiraterone. However, it is unclear whether such men benefit from taxane chemotherapy. PATIENTS AND METHODS: PROPHECY is a multicenter prospective blinded study of patients with poor-risk mCRPC starting abiraterone or enzalutamide and observed through subsequent progression and taxane chemotherapy. We assessed AR-V7 status using the Johns Hopkins modified AdnaTest CTC AR-V7 messenger RNA assay and the Epic Sciences CTC nuclear-localized AR-V7 protein assay before treatment. The primary objective was to validate the independent prognostic value of CTC AR-V7 status based on radiographic/clinical PFS. OS, confirmed prostate-specific antigen (PSA), and objective radiologic responses were secondary end points. RESULTS: We enrolled 118 men with mCRPC treated with abiraterone or enzalutamide, 51 of whom received subsequent docetaxel or cabazitaxel. Pretreatment CTC AR-V7 status by the Johns Hopkins and Epic Sciences assays was independently associated with worse PFS (hazard ratio [HR], 1.7; 95% CI, 1.0 to 2.9 and HR, 2.1; 95% CI, 1.0 to 4.4, respectively) and OS (HR, 3.3; 95% CI, 1.7 to 6.3 and HR, 3.0; 95% CI, 1.4 to 6.3, respectively) and a low probability of confirmed PSA responses, ranging from 0% to 11%, during treatment with abiraterone or enzalutamide. At progression, subsequent CTC AR-V7 detection was not associated with an inferior PSA or radiographic response or worse PFS or OS with subsequent taxane chemotherapy after adjusting for CellSearch CTC enumeration and clinical prognostic factors. CONCLUSION: Detection of AR-V7 in CTCs by two different blood-based assays is independently associated with shorter PFS and OS with abiraterone or enzalutamide, but such men with AR-V7-positive disease still experience clinical benefits from taxane chemotherapy.

4.
Cancer Drug Resist ; 3: 636-646, 2020.
Article En | MEDLINE | ID: mdl-33062959

AIM: We reviewed the radiographic response of three patients with metastatic castration-resistant prostate cancer treated with CRXL301, a docetaxel nanoparticle. For these three patients, we isolated and analyzed circulating tumor cells (CTCs) to explore microtubule (MT) drug-target engagement (MT-DTE) as a biomarker of response to treatment. MT-DTE was based on a quantitative assessment of the MT cytoskeleton in CTCs from pre- and post-treatment patient samples as a potential read-out of CRXL301 activity. METHODS: We isolated CTCs using negative CD45+ depletion and subjected them to multiplex confocal microscopy using our established protocol. CTCs were identified as CD45-/CK+/DAPI+ cells and MT-DTE was determined using our developed imaging algorithm. We quantified MT bundling in CTCs across multiple time points, from baseline to on-treatment to disease progression. Here, we describe the longitudinal analysis of MT-DTE in CTCs from patients treated with CRXL301 and its correlation with response to treatment. RESULTS: We collected CTCs at seven time points from three metastatic castration-resistant prostate cancer patients. Clinical response was evaluated by Response Evaluation Criteria in Solid Tumors (RECIST) v.1.1 criteria in those patients with measurable disease. Of the three patients enrolled, one experienced partial response (-50%) to CRXL301 and two patients were unevaluable given bone only disease. Notably, however, these two patients showed stable disease clinically based on bone scans. MT-DTE across all time points revealed that, early time points within four and 24 h of drug administration exhibited the highest levels of drug engagement (MT-DTE) as compared to baseline. However, these early time points did not correlate with clinical response. We observed that the CTCs collected one week after the first or second dose of CRXL301 treatment in the responding patient had numerically higher levels of MT-DTE as compared to the other two patients. CONCLUSION: Taxane on-target activity can be detected and analyzed quantitatively in CTCs by tubulin immunofluorescence. Early time points, within 24 h of drug administration, showed high levels of DTE but did not correlate with clinical response. MT-DTE in CTCs collected after one week on treatment correlated best with treatment response. The clinical utility of the 1-week CTC DTE should be tested and validated in future clinical trials involving taxanes.

5.
Clin Cancer Res ; 26(18): 4756-4766, 2020 09 15.
Article En | MEDLINE | ID: mdl-32641434

PURPOSE: We examined cabazitaxel, a novel next-generation taxoid, in patients with metastatic gastric cancer in a multicenter phase II study. PATIENTS AND METHODS: Patients who have progressed on one or more prior therapies for locally advanced, unresectable, or metastatic disease were eligible, and prior taxane therapy was allowed. Taxane-naïve and pretreated cohorts were analyzed independently for efficacy. The primary endpoint for both cohorts was progression-free survival (PFS) using RECIST 1.1, using a Simon's two-stage design (10% significance and 80% power) for both cohorts. Comprehensive molecular annotation included whole exome and bulk RNA sequencing. RESULTS: Fifty-three patients enrolled in the taxane-naïve cohort (Arm A) and 23 patients in the prior-taxane cohort (Arm B), from January 8, 2013, to April 8, 2015: median age 61.7 years (range, 35.5-91.8 years), 66% male, 66% Caucasian. The most common adverse events included neutropenia (17% Arm A and 39% Arm B), fatigue/muscle weakness (13%), and hematuria (12%). In Arm A, the 3-month PFS rate was 28% [95% confidence interval (CI), 17%-42%] and did not meet the prespecified efficacy target. The 3-month PFS rate in Arm B was 35% (95% CI, 16%-57%) and surpassed its efficacy target. HER2 amplification or overexpression was associated with improved disease control (P = 0.003), PFS (P = 0.04), and overall survival (P = 0.002). An M2 macrophage signature was also associated with improved survival (P = 0.031). CONCLUSIONS: Cabazitaxel has modest activity in advanced gastric cancer, including in patients previously treated with taxanes. Her2 amplification/overexpression and M2 high macrophage signature are potential biomarkers for taxane efficacy that warrant further evaluation.


Adenocarcinoma/drug therapy , Esophageal Neoplasms/drug therapy , Receptor, ErbB-2/genetics , Stomach Neoplasms/drug therapy , Taxoids/administration & dosage , Tumor-Associated Macrophages/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Progression-Free Survival , Receptor, ErbB-2/analysis , Response Evaluation Criteria in Solid Tumors , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Taxoids/adverse effects
6.
Clin Cancer Res ; 26(14): 3771-3783, 2020 07 15.
Article En | MEDLINE | ID: mdl-32321717

PURPOSE: Although taxane-based therapy is standard treatment for advanced gastric cancer, a majority of patients exhibit intrinsic resistance to taxanes. Here, we aim to identify the molecular basis of taxane resistance in gastric cancer. EXPERIMENTAL DESIGN: We performed a post hoc analysis of the TAX-325 clinical trial and molecular interrogation of gastric cancer cell lines to assess the benefit of docetaxel in diffuse (DIF-GC) versus intestinal (INT-GC) gastric cancer. We assessed drug-induced microtubule stabilization in gastric cancer cells and in biopsies of patients with gastric cancer treated with taxanes. We performed transcriptome analysis in taxane-treated gastric cancer cells and patients to identify molecular drivers of taxane resistance. RESULTS: Patients with DIF-GC did not derive a clinical benefit from taxane treatment suggesting intrinsic taxane resistance. DIF-GC cell lines displayed intrinsic resistance specific to taxanes because of impaired drug-induced microtubule stabilization, in the absence of tubulin mutations or decreased drug accumulation. Using taxane-treated gastric cancer patient biopsies, we demonstrated that absence of drug-target engagement was correlated with clinical taxane resistance. Taxane-sensitive cell lines displayed faster microtubule dynamics at baseline, implicating proteins that regulate cytoskeletal dynamics in intrinsic taxane resistance. Differential gene expression analysis of untreated and docetaxel-treated gastric cancer lines and patient samples identified kinesins to be associated with taxane sensitivity in vitro and in patient samples. CONCLUSIONS: Our data reveal that taxane resistance is more prevalent in patients with DIF-GC, support assessment of drug-target engagement as an early read-out of taxane clinical efficacy, and encourage the investigation of kinesins and other microtubule-associated proteins as potentially targetable mediators of taxane resistance in gastric cancer.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Docetaxel/pharmacology , Microtubules/drug effects , Stomach Neoplasms/drug therapy , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Biopsy , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Docetaxel/therapeutic use , Drug Resistance, Neoplasm , Female , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Humans , Kaplan-Meier Estimate , Kinesins/metabolism , Male , Microtubules/metabolism , Middle Aged , Pilot Projects , Progression-Free Survival , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Tubulin/metabolism
7.
Nat Commun ; 10(1): 5221, 2019 11 19.
Article En | MEDLINE | ID: mdl-31745082

Drug target identification is a crucial step in development, yet is also among the most complex. To address this, we develop BANDIT, a Bayesian machine-learning approach that integrates multiple data types to predict drug binding targets. Integrating public data, BANDIT benchmarked a ~90% accuracy on 2000+ small molecules. Applied to 14,000+ compounds without known targets, BANDIT generated ~4,000 previously unknown molecule-target predictions. From this set we validate 14 novel microtubule inhibitors, including 3 with activity on resistant cancer cells. We applied BANDIT to ONC201-an anti-cancer compound in clinical development whose target had remained elusive. We identified and validated DRD2 as ONC201's target, and this information is now being used for precise clinical trial design. Finally, BANDIT identifies connections between different drug classes, elucidating previously unexplained clinical observations and suggesting new drug repositioning opportunities. Overall, BANDIT represents an efficient and accurate platform to accelerate drug discovery and direct clinical application.


Bayes Theorem , Drug Delivery Systems/methods , Drug Discovery/methods , Drug Repositioning/methods , Machine Learning , Antineoplastic Agents/administration & dosage , Humans , Neoplasms/drug therapy , Neoplasms/metabolism
9.
J Clin Oncol ; 37(13): 1120-1129, 2019 05 01.
Article En | MEDLINE | ID: mdl-30865549

PURPOSE: Androgen receptor splice variant 7 (AR-V7) results in a truncated receptor, which leads to ligand-independent constitutive activation that is not inhibited by anti-androgen therapies, including abiraterone or enzalutamide. Given that previous reports suggested that circulating tumor cell (CTC) AR-V7 detection is a poor prognostic indicator for the clinical efficacy of secondary hormone therapies, we conducted a prospective multicenter validation study. PATIENTS AND METHODS: PROPHECY ( ClinicalTrials.gov identifier: NCT02269982) is a multicenter, prospective-blinded study of men with high-risk mCRPC starting abiraterone acetate or enzalutamide treatment. The primary objective was to validate the prognostic significance of baseline CTC AR-V7 on the basis of radiographic or clinical progression free-survival (PFS) by using the Johns Hopkins University modified-AdnaTest CTC AR-V7 mRNA assay and the Epic Sciences CTC nuclear-specific AR-V7 protein assay. Overall survival (OS) and prostate-specific antigen responses were secondary end points. RESULTS: We enrolled 118 men with mCRPC who were starting abiraterone or enzalutamide treatment. AR-V7 detection by both the Johns Hopkins and Epic AR-V7 assays was independently associated with shorter PFS (hazard ratio, 1.9 [95% CI, 1.1 to 3.3; P = .032] and 2.4 [95% CI, 1.1 to 5.1; P = .020], respectively) and OS (hazard ratio, 4.2 [95% CI, 2.1 to 8.5] and 3.5 [95% CI, 1.6 to 8.1], respectively) after adjusting for CTC number and clinical prognostic factors. Men with AR-V7-positive mCRPC had fewer confirmed prostate-specific antigen responses (0% to 11%) or soft tissue responses (0% to 6%). The observed percentage agreement between the two AR-V7 assays was 82%. CONCLUSION: Detection of AR-V7 in CTCs by two blood-based assays is independently associated with shorter PFS and OS with abiraterone or enzalutamide, and such men with mCRPC should be offered alternative treatments.


Androstenes/therapeutic use , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Aged , Aged, 80 and over , Benzamides , Humans , Male , Middle Aged , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Nitriles , Phenylthiohydantoin/therapeutic use , Predictive Value of Tests , Progression-Free Survival , Prospective Studies , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms , Receptors, Androgen/metabolism , Reproducibility of Results , Treatment Outcome
10.
Phys Biol ; 16(3): 036003, 2019 03 22.
Article En | MEDLINE | ID: mdl-30763921

Androgen receptor (AR) signaling drives prostate cancer (PC) progression and remains active upon transition to castration resistant prostate cancer (CRPC). Active AR signaling is achieved through the nuclear accumulation of AR following ligand binding and through expression of ligand-independent, constitutively active AR splice variants, such as AR-V7, which is the most commonly expressed variant in metastatic CRPC (mCRPC) patients. Most currently approved PC therapies aim to abrogate AR signaling and activity by inhibiting this ligand-mediated nuclear translocation. In a prospective multi-institutional clinical study, we recently showed that taxane based chemotherapy is also capable of impairing AR nuclear localization (ARNL) in circulating tumor cells (CTCs) from CRPC patients, whereas taxane induced decreases in ARNL were associated with response. Thus, quantitative assessment of ARNL in CTCs can be used to monitor therapeutic response in patients and help guide clinical decisions. Here, we describe the development and implementation of quantitative high throughput (QHT) image analysis algorithms to aid in CTC identification and quantitative assessment of percent ARNL (%ARNL). We applied this algorithm to fifteen CRPC patients at the start of taxane chemotherapy, quantified %ARNL in CTCs, and correlated with expression of AR-V7 mRNA (from CTCs enriched via negative, CD45+ depletion of peripheral blood) and with biochemical (prostate specific antigen; PSA) response to taxane chemotherapy. We found that CTCs from AR-V7 positive patients had higher baseline %ARNL compared to CTCs from AR-V7 negative patients, consistent with the constitutive nuclear localization of AR-V7. In addition, lower %ARNL in CTCs at baseline was associated with biochemical response to taxane chemotherapy. High inter- and intra-patient heterogeneity was also observed. As ARNL is required for active AR signaling, the QHT algorithms described herein can provide prognostic and/or predictive value in future clinical studies.


Antineoplastic Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplastic Cells, Circulating/drug effects , Nuclear Localization Signals/analysis , Prostatic Neoplasms/drug therapy , Receptors, Androgen/metabolism , Taxoids/pharmacology , Algorithms , Cell Nucleus/drug effects , High-Throughput Nucleotide Sequencing , Humans , Male , Neoplastic Cells, Circulating/metabolism , Nuclear Localization Signals/drug effects , Prostatic Neoplasms/secondary , RNA, Messenger/genetics , Tumor Cells, Cultured
11.
Clin Cancer Res ; 25(6): 1880-1888, 2019 03 15.
Article En | MEDLINE | ID: mdl-30301829

PURPOSE: Biomarkers aiding treatment optimization in metastatic castration-resistant prostate cancer (mCRPC) are scarce. The presence or absence of androgen receptor (AR) splice variants, AR-V7 and ARv567es, in mCRPC patient circulating tumor cells (CTC) may be associated with taxane treatment outcomes.Experimental Design: A novel digital droplet PCR (ddPCR) assay assessed AR-splice variant expression in CTCs from patients receiving docetaxel or cabazitaxel in TAXYNERGY (NCT01718353). Patient outcomes were examined according to AR-splice variant expression, including prostate-specific antigen (PSA)50 response and progression-free survival (PFS). RESULTS: Of the 54 evaluable patients, 36 (67%) were AR-V7+, 42 (78%) were ARv567es+, 29 (54%) were double positive, and 5 (9%) were double negative. PSA50 response rates at any time were numerically higher for AR-V7- versus AR-V7+ (78% vs. 58%; P = 0.23) and for ARv567es- versus ARv567es+ (92% vs. 57%; P = 0.04) patients. When AR-V mRNA status was correlated with change in nuclear AR from cycle 1 day 1 to day 8 (n = 24), AR-V7+ patients (n = 16) had a 0.4% decrease versus a 12.9% and 26.7% decrease in AR-V7-/ARv567es- (n = 3) and AR-V7-/ARv567es+ (n = 5) patients, respectively, suggesting a dominant role for AR-V7 over ARv567es. Median PFS was 12.02 versus 8.48 months for AR-V7- versus AR-V7+ (HR = 0.38; P = 0.01), and 12.71 versus 7.29 months for ARv567es- versus ARv567es+ (HR = 0.37; P = 0.02). For AR-V7+, AR-V7-/ARv567es+, and AR-V7-/ARv567es- patients, median PFS was 8.48, 11.17, and 16.62 months, respectively (P = 0.0013 for trend). CONCLUSIONS: Although detection of both CTC-specific AR-V7 and ARv567es by ddPCR influenced taxane outcomes, AR-V7 primarily mediated the prognostic impact. The absence of both variants was associated with the best response and PFS with taxane treatment.See related commentary by Dehm et al., p. 1696.


Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm/genetics , Neoplastic Cells, Circulating/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/metabolism , Docetaxel/pharmacology , Docetaxel/therapeutic use , Humans , Kallikreins/blood , Male , Middle Aged , Prednisone/pharmacology , Prednisone/therapeutic use , Progression-Free Survival , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Androgen/metabolism , Taxoids/pharmacology , Taxoids/therapeutic use , Treatment Outcome
12.
Nat Cell Biol ; 20(3): 332-343, 2018 03.
Article En | MEDLINE | ID: mdl-29459780

The heterogeneity of exosomal populations has hindered our understanding of their biogenesis, molecular composition, biodistribution and functions. By employing asymmetric flow field-flow fractionation (AF4), we identified two exosome subpopulations (large exosome vesicles, Exo-L, 90-120 nm; small exosome vesicles, Exo-S, 60-80 nm) and discovered an abundant population of non-membranous nanoparticles termed 'exomeres' (~35 nm). Exomere proteomic profiling revealed an enrichment in metabolic enzymes and hypoxia, microtubule and coagulation proteins as well as specific pathways, such as glycolysis and mTOR signalling. Exo-S and Exo-L contained proteins involved in endosomal function and secretion pathways, and mitotic spindle and IL-2/STAT5 signalling pathways, respectively. Exo-S, Exo-L and exomeres each had unique N-glycosylation, protein, lipid, DNA and RNA profiles and biophysical properties. These three nanoparticle subsets demonstrated diverse organ biodistribution patterns, suggesting distinct biological functions. This study demonstrates that AF4 can serve as an improved analytical tool for isolating extracellular vesicles and addressing the complexities of heterogeneous nanoparticle subpopulations.


Cell Fractionation/methods , Exosomes/metabolism , Nanoparticles , Neoplasms/metabolism , Proteins/metabolism , Animals , Biomarkers/metabolism , DNA/genetics , DNA/metabolism , Energy Metabolism , Exosomes/classification , Exosomes/genetics , Exosomes/pathology , Female , Glycomics , Glycosylation , HCT116 Cells , Humans , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Metabolomics , Mice , Mice, Inbred C57BL , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/pathology , PC-3 Cells , Phenotype , Proteomics , RNA/genetics , RNA/metabolism , Signal Transduction , Tissue Distribution
13.
J Clin Oncol ; 35(28): 3181-3188, 2017 Oct 01.
Article En | MEDLINE | ID: mdl-28632486

Purpose The TAXYNERGY trial ( ClinicalTrials.gov identifier: NCT01718353) evaluated clinical benefit from early taxane switch and circulating tumor cell (CTC) biomarkers to interrogate mechanisms of sensitivity or resistance to taxanes in men with chemotherapy-naïve, metastatic, castration-resistant prostate cancer. Patients and Methods Patients were randomly assigned 2:1 to docetaxel or cabazitaxel. Men who did not achieve ≥ 30% prostate-specific antigen (PSA) decline by cycle 4 (C4) switched taxane. The primary clinical endpoint was confirmed ≥ 50% PSA decline versus historical control (TAX327). The primary biomarker endpoint was analysis of post-treatment CTCs to confirm the hypothesis that clinical response was associated with taxane drug-target engagement, evidenced by decreased percent androgen receptor nuclear localization (%ARNL) and increased microtubule bundling. Results Sixty-three patients were randomly assigned to docetaxel (n = 41) or cabazitaxel (n = 22); 44.4% received prior potent androgen receptor-targeted therapy. Overall, 35 patients (55.6%) had confirmed ≥ 50% PSA responses, exceeding the historical control rate of 45.4% (TAX327). Of 61 treated patients, 33 (54.1%) had ≥ 30% PSA declines by C4 and did not switch taxane, 15 patients (24.6%) who did not achieve ≥ 30% PSA declines by C4 switched taxane, and 13 patients (21.3%) discontinued therapy before or at C4. Of patients switching taxane, 46.7% subsequently achieved ≥ 50% PSA decrease. In 26 CTC-evaluable patients, taxane-induced decrease in %ARNL (cycle 1 day 1 v cycle 1 day 8) was associated with a higher rate of ≥ 50% PSA decrease at C4 ( P = .009). Median composite progression-free survival was 9.1 months (95% CI, 4.9 to 11.7 months); median overall survival was not reached at 14 months. Common grade 3 or 4 adverse events included fatigue (13.1%) and febrile neutropenia (11.5%). Conclusion The early taxane switch strategy was associated with improved PSA response rates versus TAX327. Taxane-induced shifts in %ARNL may serve as an early biomarker of clinical benefit in patients treated with taxanes.


Neoplastic Cells, Circulating/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Taxoids/administration & dosage , Aged , Biomarkers, Tumor/blood , Cell Nucleus/metabolism , Disease-Free Survival , Docetaxel , Drug Administration Schedule , Humans , Kallikreins/blood , Male , Neoplastic Cells, Circulating/pathology , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/blood , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Taxoids/adverse effects
14.
Cancer Treat Rev ; 57: 16-27, 2017 Jun.
Article En | MEDLINE | ID: mdl-28527407

Patients with metastatic castration-resistant prostate cancer (mCPRC) now have an unprecedented number of approved treatment options, including chemotherapies (docetaxel, cabazitaxel), androgen receptor (AR)-targeted therapies (enzalutamide, abiraterone), a radioisotope (radium-223) and a cancer vaccine (sipuleucel-T). However, the optimal treatment sequencing pathway is unknown, and this problem is exacerbated by the issues of primary and acquired resistance. This review focuses on mechanisms of resistance to AR-targeted therapies and taxane-based chemotherapy. Patients treated with abiraterone, enzalutamide, docetaxel or cabazitaxel may present with primary resistance, or eventually acquire resistance when on treatment. Multiple resistance mechanisms to AR-targeted agents have been proposed, including: intratumoral androgen production, amplification, mutation, or expression of AR splice variants, increased steroidogenesis, upregulation of signals downstream of the AR, and development of androgen-independent tumor cells. Known mechanisms of resistance to chemotherapy are distinct, and include: tubulin alterations, increased expression of multidrug resistance genes, TMPRSS2-ERG fusion genes, kinesins, cytokines, and components of other signaling pathways, and epithelial-mesenchymal transition. Utilizing this information, biomarkers of resistance/response have the potential to direct treatment decisions. Expression of the AR splice variant AR-V7 may predict resistance to AR-targeted agents, but available biomarker assays are yet to be prospectively validated in the clinic. Ongoing prospective trials are evaluating the sequential use of different drugs, or combination regimens, and the results of these studies, combined with a deeper understanding of mechanisms of primary and acquired resistance to treatment, have the potential to drive future treatment decisions in mCRPC.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm , Humans , Male , Molecular Targeted Therapy , Neoplasm Metastasis , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism
15.
J Cancer Metastasis Treat ; 3: 190-205, 2017.
Article En | MEDLINE | ID: mdl-29707651

The field of CTC enrichment has seen many emerging technologies in recent years, which have resulted in the identification and monitoring of clinically relevant, CTC-based biomarkers that can be analyzed routinely without invasive procedures. Several molecular platforms have been used to investigate the molecular profile of the disease, from high throughput gene expression analyses down to single cell biological dissection. The established presence of CTC heterogeneity nevertheless constitutes a challenge for cell isolation as the several subpopulations can potentially display different molecular characteristics; in this scenario, careful consideration must be given to the isolation approach, whereas methods that discriminate against certain subpopulations may result in the exclusion of CTCs that carry biological relevance. In the context of prostate cancer (PC), CTC molecular interrogation can enable longitudinal monitoring of key biological features during treatment with substantial clinical impact, as several biomarkers could predict tumor response to AR signaling inhibitors (abiraterone, enzalutamide) or standard chemotherapy (taxanes). Thus, CTCs represent a valuable opportunity to personalize medicine in current clinical practice.

16.
Expert Opin Biol Ther ; 17(2): 135-149, 2017 02.
Article En | MEDLINE | ID: mdl-27817214

INTRODUCTION: Progress in the understanding of molecular events of carcinogenesis and cancer evolution as well as the identification of tumor antigens has led to the development of different targeted therapeutic approaches, including the use of monoclonal antibodies (mAbs). Prostate cancer (PC) is highly amenable to mAb targeting given the existence of prostate-specific targets and the natural history and localization of metastatic disease. Areas covered: Several aspects of the PC phenotype, including growth factors, angiogenesis mediators, bone microenvironment signals, and immune evasion pathways, have become areas of ongoing investigation in terms of mAb targeting. These are reviewed. The greatest success so far has been the development of mAbs against prostate-specific tumor antigen (PSMA), which opened an opportunity to improve diagnostic accuracy and simultaneously target metastatic disease. Expert opinion: As mAb use in PC continues to evolve, more accurate imaging of the extent of disease and more effective mAb therapies (naked or conjugated with drugs, toxins or radioactive molecules) are emerging. In addition, the combination of mAbs with other treatment modalities is expected to further improve responses and overall survival. Identification of validated biomarkers is necessary for better recognition of patient subgroups who will derive the greatest benefit from mAb therapy.


Antibodies, Monoclonal/administration & dosage , Kallikreins/antagonists & inhibitors , Prostate-Specific Antigen/antagonists & inhibitors , Prostatic Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/metabolism , Antigens, Surface/immunology , Antigens, Surface/metabolism , Drug Delivery Systems/methods , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/immunology , Glutamate Carboxypeptidase II/metabolism , Humans , Kallikreins/immunology , Kallikreins/metabolism , Male , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Prostate-Specific Antigen/immunology , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Treatment Outcome
17.
Nat Commun ; 5: 5548, 2014 Nov 25.
Article En | MEDLINE | ID: mdl-25420520

Taxanes are the only chemotherapies used to treat patients with metastatic castration-resistant prostate cancer (CRPC). Despite the initial efficacy of taxanes in treating CRPC, all patients ultimately fail due to the development of drug resistance. In this study, we show that ERG overexpression in in vitro and in vivo models of CRPC is associated with decreased sensitivity to taxanes. ERG affects several parameters of microtubule dynamics and inhibits effective drug-target engagement of docetaxel or cabazitaxel with tubulin. Finally, analysis of a cohort of 34 men with metastatic CRPC treated with docetaxel chemotherapy reveals that ERG-overexpressing prostate cancers have twice the chance of docetaxel resistance than ERG-negative cancers. Our data suggest that ERG plays a role beyond regulating gene expression and functions outside the nucleus to cooperate with tubulin towards taxane insensitivity. Determining ERG rearrangement status may aid in patient selection for docetaxel or cabazitaxel therapy and/or influence co-targeting approaches.


Antineoplastic Agents/administration & dosage , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Taxoids/administration & dosage , Trans-Activators/metabolism , Cell Line, Tumor , Cohort Studies , Docetaxel , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Trans-Activators/genetics , Transcriptional Regulator ERG , Tubulin/genetics , Tubulin/metabolism
18.
Mol Diagn Ther ; 18(4): 389-402, 2014 Aug.
Article En | MEDLINE | ID: mdl-24809501

Circulating tumor cells (CTCs) have emerged as a viable solution to the lack of tumor tissue availability for patients with a variety of solid tumors, including prostate cancer. Different approaches have been used to capture this tumor cell population and several of these techniques have been used to assess the potential role of CTCs as a biological marker to predict treatment efficacy and clinical outcome. CTCs are now considered a strong tool to understand the molecular characteristics of prostate cancer, and to be used and analyzed as a 'liquid biopsy' in the attempt to grasp the biological portrait of the disease in the individual patient.


Neoplastic Cells, Circulating/pathology , Prostatic Neoplasms/economics , Prostatic Neoplasms/pathology , Biomarkers, Tumor , Cell Line, Tumor , Humans , Male
19.
Lab Chip ; 14(1): 147-56, 2014 Jan 07.
Article En | MEDLINE | ID: mdl-24202699

Circulating tumor cells (CTCs) have emerged as a reliable source of tumor cells, and their concentration has prognostic implications. CTC capture offers real-time access to cancer tissue without the need of an invasive biopsy, while their phenotypic and molecular interrogation can provide insight into the biological changes of the tumor that occur during treatment. The majority of the CTC capture methods are based on EpCAM expression as a surface marker of tumor-derived cells. However, EpCAM protein expression levels can be significantly down regulated during cancer progression as a consequence of the process of epithelial to mesenchymal transition. In this paper, we describe a novel HER2 (Human Epidermal Receptor 2)-based microfluidic device for the isolation of CTCs from peripheral blood of patients with HER2-expressing solid tumors. We selected HER2 as an alternative to EpCAM as the receptor is biologically and therapeutically relevant in several solid tumors, like breast cancer (BC), where it is overexpressed in 30% of the patients and expressed in 90%, and gastric cancer (GC), in which HER2 presence is identified in more than 60% of the cases. We tested the performance of various anti HER2 antibodies in a panel of nine different BC cell lines with varying HER2 protein expression levels, using immunoblotting, confocal microscopy, live cells imaging and flow cytometry analyses. The antibody associated with the highest capture efficiency and sensitivity for HER2 expressing cells on the microfluidic device was the one that performed best in live cells imaging and flow cytometry assays as opposed to the fixed cell analyses, suggesting that recognition of the native conformation of the HER2 extracellular epitope on living cells was essential for specificity and sensitivity of CTC capture. Next, we tested the performance of the HER2 microfluidic device using blood from metastatic breast and gastric cancer patients. The HER2 microfluidic device exhibited CTC capture in 9/9 blood samples. Thus, the described HER2-based microfluidic device can be considered as a valid clinically relevant method for CTC capture in HER2 expressing solid cancers.


Breast Neoplasms/metabolism , Cell Separation/methods , Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating/metabolism , Receptor, ErbB-2/metabolism , Stomach Neoplasms/metabolism , Antibodies, Immobilized/chemistry , Antibodies, Immobilized/immunology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Separation/instrumentation , Female , Humans , Microfluidic Analytical Techniques/instrumentation , Receptor, ErbB-2/immunology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology
20.
J Neurooncol ; 90(1): 31-3, 2008 Oct.
Article En | MEDLINE | ID: mdl-18566747

Brain metastases are a common occurrence and a major cause of mortality in non-small-cell lung cancer, with few systemic treatment options. Although targeting epidermal growth factor receptor-associated tyrosine kinase with erlotinib and gefitinib results in durable responses in some patients, the activity of these drugs against brain metastases has been poorly documented. In particular, few reports have so far reported the activity of erlotinib in this setting. Here we report the case of a male Italian smoker with an adeno-carcinoma of the lung whose lung cancer and brain metastases have both responded to erlotinib.


Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Quinazolines/therapeutic use , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/secondary , Erlotinib Hydrochloride , Humans , Lung Neoplasms/pathology , Magnetic Resonance Imaging , Male , Middle Aged
...