Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5711, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977673

RESUMEN

The cell cortex is a dynamic assembly formed by the plasma membrane and underlying cytoskeleton. As the main determinant of cell shape, the cortex ensures its integrity during passive and active deformations by adapting cytoskeleton topologies through yet poorly understood mechanisms. The spectrin meshwork ensures such adaptation in erythrocytes and neurons by adopting different organizations. Erythrocytes rely on triangular-like lattices of spectrin tetramers, whereas in neurons they are organized in parallel, periodic arrays. Since spectrin is ubiquitously expressed, we exploited Expansion Microscopy to discover that, in fibroblasts, distinct meshwork densities co-exist. Through biophysical measurements and computational modeling, we show that the non-polarized spectrin meshwork, with the intervention of actomyosin, can dynamically transition into polarized clusters fenced by actin stress fibers that resemble periodic arrays as found in neurons. Clusters experience lower mechanical stress and turnover, despite displaying an extension close to the tetramer contour length. Our study sheds light on the adaptive properties of spectrin, which participates in the protection of the cell cortex by varying its densities in response to key mechanical features.


Asunto(s)
Espectrina , Espectrina/metabolismo , Animales , Fibroblastos/metabolismo , Actomiosina/metabolismo , Ratones , Citoesqueleto/metabolismo , Estrés Mecánico , Membrana Celular/metabolismo , Forma de la Célula , Actinas/metabolismo , Fibras de Estrés/metabolismo , Humanos
2.
Adv Sci (Weinh) ; 11(3): e2304303, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37948328

RESUMEN

Optical stimulation in the red/near infrared range recently gained increasing interest, as a not-invasive tool to control cardiac cell activity and repair in disease conditions. Translation of this approach to therapy is hampered by scarce efficacy and selectivity. The use of smart biocompatible materials, capable to act as local, NIR-sensitive interfaces with cardiac cells, may represent a valuable solution, capable to overcome these limitations. In this work, a far red-responsive conjugated polymer, namely poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene-2,6-diyl]] (PCPDTBT) is proposed for the realization of photoactive interfaces with cardiomyocytes derived from pluripotent stem cells (hPSC-CMs). Optical excitation of the polymer turns into effective ionic and electrical modulation of hPSC-CMs, in particular by fastening Ca2+ dynamics, inducing action potential shortening, accelerating the spontaneous beating frequency. The involvement in the phototransduction pathway of Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) and Na+ /Ca2+ exchanger (NCX) is proven by pharmacological assays and is correlated with physical/chemical processes occurring at the polymer surface upon photoexcitation. Very interestingly, an antiarrhythmogenic effect, unequivocally triggered by polymer photoexcitation, is also observed. Overall, red-light excitation of conjugated polymers may represent an unprecedented opportunity for fine control of hPSC-CMs functionality and can be considered as a perspective, noninvasive approach to treat arrhythmias.


Asunto(s)
Miocitos Cardíacos , Células Madre Pluripotentes , Polímeros/farmacología
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298497

RESUMEN

Brugada syndrome (BrS) is an inherited autosomal dominant cardiac channelopathy. Pathogenic rare mutations in the SCN5A gene, encoding the alpha-subunit of the voltage-dependent cardiac Na+ channel protein (Nav1.5), are identified in 20% of BrS patients, affecting the correct function of the channel. To date, even though hundreds of SCN5A variants have been associated with BrS, the underlying pathogenic mechanisms are still unclear in most cases. Therefore, the functional characterization of the SCN5A BrS rare variants still represents a major hurdle and is fundamental to confirming their pathogenic effect. Human cardiomyocytes (CMs) differentiated from pluripotent stem cells (PSCs) have been extensively demonstrated to be reliable platforms for investigating cardiac diseases, being able to recapitulate specific traits of disease, including arrhythmic events and conduction abnormalities. Based on this, in this study, we performed a functional analysis of the BrS familial rare variant NM_198056.2:c.3673G>A (NP_932173.1:p.Glu1225Lys), which has been never functionally characterized before in a cardiac-relevant context, as the human cardiomyocyte. Using a specific lentiviral vector encoding a GFP-tagged SCN5A gene carrying the specific c.3673G>A variant and CMs differentiated from control PSCs (PSC-CMs), we demonstrated an impairment of the mutated Nav1.5, thus suggesting the pathogenicity of the rare BrS detected variant. More broadly, our work supports the application of PSC-CMs for the assessment of the pathogenicity of gene variants, the identification of which is increasing exponentially due to the advances in next-generation sequencing methods and their massive use in genetic testing.


Asunto(s)
Síndrome de Brugada , Células Madre Pluripotentes , Humanos , Síndrome de Brugada/metabolismo , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Mutación , Células Madre Pluripotentes/metabolismo
4.
iScience ; 26(3): 106121, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36879812

RESUMEN

Non-genetic photostimulation is a novel and rapidly growing multidisciplinary field that aims to induce light-sensitivity in living systems by exploiting exogeneous phototransducers. Here, we propose an intramembrane photoswitch, based on an azobenzene derivative (Ziapin2), for optical pacing of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The light-mediated stimulation process has been studied by applying several techniques to detect the effect on the cell properties. In particular, we recorded changes in membrane capacitance, in membrane potential (Vm), and modulation of intracellular Ca2+ dynamics. Finally, cell contractility was analyzed using a custom MATLAB algorithm. Photostimulation of intramembrane Ziapin2 causes a transient Vm hyperpolarization followed by a delayed depolarization and action potential firing. The observed initial electrical modulation nicely correlates with changes in Ca2+ dynamics and contraction rate. This work represents the proof of principle that Ziapin2 can modulate electrical activity and contractility in hiPSC-CMs, opening up a future development in cardiac physiology.

5.
Int J Mol Sci ; 21(22)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182716

RESUMEN

Brain-Derived Neurotrophic Factor (BDNF) and its rs6265 single nucleotide polymorphism (SNP) play an important role in post-stroke recovery. We investigated the correlation between BDNF rs6265 SNP and recovery outcome, measured by the modified Barthel index, in 49 patients with stroke hospitalized in our rehabilitation center at baseline (T0) and after 30 sessions of rehabilitation treatment (T1); moreover, we analyzed the methylation level of the CpG site created or abolished into BDNF rs6265 SNP. In total, 11 patients (22.4%) were heterozygous GA, and 32 (65.3%) and 6 (12.2%) patients were homozygous GG and AA, respectively. The univariate analysis showed a significant relationship between the BDNF rs6265 SNP and the modified Barthel index cut-off (χ2(1, N = 48) = 3.86, p = 0.049), considering patients divided for carrying (A+) or not carrying (A-) the A allele. A higher percentage of A- patients obtained a favorable outcome, as showed by the logistic regression model corrected by age and time since the stroke onset, compared with the A+ patients (OR: 5.59). At baseline (T0), the percentage of BDNF methylation was significantly different between GG (44.6 ± 1.1%), GA (39.5 ± 2.8%) and AA (28.5 ± 1.7%) alleles (p < 0.001). After rehabilitation (T1), only patients A- showed a significant increase in methylation percentages (mean change = 1.3, CI: 0.4-2.2, p = 0.007). This preliminary study deserves more investigation to confirm if BDNF rs6265 SNP and its methylation could be used as a biological marker of recovery in patients with stroke undergoing rehabilitation treatment.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Polimorfismo de Nucleótido Simple , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/genética , Anciano , Anciano de 80 o más Años , Islas de CpG , Metilación de ADN , Femenino , Marcadores Genéticos , Heterocigoto , Homocigoto , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Pronóstico , Resultado del Tratamiento
6.
Nat Commun ; 11(1): 5108, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037189

RESUMEN

The spectrin-based membrane skeleton is a major component of the cell cortex. While expressed by all metazoans, its dynamic interactions with the other cortex components, including the plasma membrane or the acto-myosin cytoskeleton, are poorly understood. Here, we investigate how spectrin re-organizes spatially and dynamically under the membrane during changes in cell mechanics. We find spectrin and acto-myosin to be spatially distinct but cooperating during mechanical challenges, such as cell adhesion and contraction, or compression, stretch and osmolarity fluctuations, creating a cohesive cortex supporting the plasma membrane. Actin territories control protrusions and contractile structures while spectrin territories concentrate in retractile zones and low-actin density/inter-contractile regions, acting as a fence that organize membrane trafficking events. We unveil here the existence of a dynamic interplay between acto-myosin and spectrin necessary to support a mesoscale organization of the lipid bilayer into spatially-confined cortical territories during cell mechanoresponse.


Asunto(s)
Actomiosina/metabolismo , Membrana Celular/metabolismo , Espectrina/metabolismo , Actinas/metabolismo , Animales , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Endocitosis/fisiología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Microscopía Confocal , Células 3T3 NIH , Espectrina/genética , Estrés Mecánico
7.
Nat Commun ; 9(1): 2085, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789562

RESUMEN

The originally published version of this Article contained an error in the name of the author Salvatore Corallino, which was incorrectly given as Corallino Salvatore. This has now been corrected in both the PDF and HTML versions of the Article.

8.
Nat Commun ; 9(1): 1475, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662076

RESUMEN

How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidence indicates that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of circular dorsal ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as a steering wheel for GF-mediated chemotaxis and chemoinvasion.


Asunto(s)
Quimiotaxis/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Proteínas de Unión al GTP rab/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Expresión Génica , Células HeLa , Humanos , Ratones , Imagen Molecular , Factor de Crecimiento Derivado de Plaquetas/farmacología , Cultivo Primario de Células , Transducción de Señal , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...