Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Biophys Rev ; 16(2): 219-235, 2024 Apr.
Article En | MEDLINE | ID: mdl-38737209

Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.

2.
Biomimetics (Basel) ; 8(7)2023 Nov 09.
Article En | MEDLINE | ID: mdl-37999174

The structural biopolymer spongin in the form of a 3D scaffold resembles in shape and size numerous species of industrially useful marine keratosan demosponges. Due to the large-scale aquaculture of these sponges worldwide, it represents a unique renewable source of biological material, which has already been successfully applied in biomedicine and bioinspired materials science. In the present study, spongin from the demosponge Hippospongia communis was used as a microporous template for the development of a new 3D composite containing goethite [α-FeO(OH)]. For this purpose, an extreme biomimetic technique using iron powder, crystalline iodine, and fibrous spongin was applied under laboratory conditions for the first time. The product was characterized using SEM and digital light microscopy, infrared and Raman spectroscopy, XRD, thermogravimetry (TG/DTG), and confocal micro X-ray fluorescence spectroscopy (CMXRF). A potential application of the obtained goethite-spongin composite in the electrochemical sensing of dopamine (DA) in human urine samples was investigated, with satisfactory recoveries (96% to 116%) being obtained.

3.
Sci Rep ; 13(1): 4274, 2023 03 15.
Article En | MEDLINE | ID: mdl-36922643

As the state of resection margins is an important prognostic factor after extirpation of colorectal liver metastases, surgeons aim to obtain negative margins, sometimes elaborated by resections of the positive resection plane after intraoperative frozen sections. However, this is time consuming and results sometimes remain unclear during surgery. Label-free multimodal multiphoton microscopy (MPM) is an optical technique that retrieves morpho-chemical information avoiding all staining and that can potentially be performed in real-time. Here, we investigated colorectal liver metastases and hepatic tissue using a combination of three endogenous nonlinear signals, namely: coherent anti-Stokes Raman scattering (CARS) to visualize lipids, two-photon excited fluorescence (TPEF) to visualize cellular patterns, and second harmonic generation (SHG) to visualize collagen fibers. We acquired and analyzed over forty thousand MPM images of metastatic and normal liver tissue of 106 patients. The morphological information with biochemical specificity produced by MPM allowed discriminating normal liver from metastatic tissue and discerning the tumor borders on cryosections as well as formalin-fixed bulk tissue. Furthermore, automated tissue type classification with a correct rate close to 95% was possible using a simple approach based on discriminant analysis of texture parameters. Therefore, MPM has the potential to increase the precision of resection margins in hepatic surgery of metastases without prolonging surgical intervention.


Colorectal Neoplasms , Liver Neoplasms , Humans , Margins of Excision , Microscopy, Fluorescence, Multiphoton/methods
4.
Heliyon ; 9(2): e13206, 2023 Feb.
Article En | MEDLINE | ID: mdl-36747519

Corneal cross-linking (CXL) with riboflavin and ultraviolet A light is a therapeutic procedure to restore the mechanical stability of corneal tissue. The treatment method is applied to pathological tissue, such as keratoconus and induces the formation of new cross-links. At present, the molecular mechanisms of induced cross-linking are still not known exactly. In this study, we investigated molecular alterations within porcine cornea tissue after treatment with riboflavin and ultraviolet A light by surface enhanced Raman spectroscopy (SERS). For that purpose, after CXL treatment a thin silver layer was vapor-deposited onto cornea flaps. To explore molecular alterations induced by the photochemical process hierarchical cluster analysis (HCA) was used. The detailed analysis of SERS spectra reveals that there is no general change in collagen secondary structure while modifications on amino acid side chains are the most dominant outcome. The formation of secondary and aromatic amine groups as well as methylene and carbonyl groups were observed. Even though successful cross-linking could not be registered in all treated samples, Raman signals of newly formed chemical groups are already present in riboflavin only treated corneas.

5.
J Neurooncol ; 161(1): 57-66, 2023 Jan.
Article En | MEDLINE | ID: mdl-36509907

PURPOSE: Infrared (IR) spectroscopy has the potential for tumor delineation in neurosurgery. Previous research showed that IR spectra of brain tumors are generally characterized by reduced lipid-related and increased protein-related bands. Therefore, we propose the exploitation of these common spectral changes for brain tumor recognition. METHODS: Attenuated total reflection IR spectroscopy was performed on fresh specimens of 790 patients within minutes after resection. Using principal component analysis and linear discriminant analysis, a classification model was developed on a subset of glioblastoma (n = 135) and non-neoplastic brain (n = 27) specimens, and then applied to classify the IR spectra of several types of brain tumors. RESULTS: The model correctly classified 82% (517/628) of specimens as "tumor" or "non-tumor", respectively. While the sensitivity was limited for infiltrative glioma, this approach recognized GBM (86%), other types of primary brain tumors (92%) and brain metastases (92%) with high accuracy and all non-tumor samples were correctly identified. CONCLUSION: The concept of differentiation of brain tumors from non-tumor brain based on a common spectroscopic tumor signature will accelerate clinical translation of infrared spectroscopy and related technologies. The surgeon could use a single instrument to detect a variety of brain tumor types intraoperatively in future clinical settings. Our data suggests that this would be associated with some risk of missing infiltrative regions or tumors, but not with the risk of removing non-tumor brain.


Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/surgery , Glioblastoma/pathology , Spectrophotometry, Infrared/methods , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Glioma/pathology , Brain/pathology , Spectroscopy, Fourier Transform Infrared/methods
6.
Anal Bioanal Chem ; 415(4): 603-613, 2023 Feb.
Article En | MEDLINE | ID: mdl-36462048

The in ovo sexing of chicken eggs is a current task and a prerequisite to overcome the mass killing of male day-old chicks from laying lines. Although various methods have been developed and tested in recent years, practicable methods for sex determination are still missing which can be applicated in poultry hatcheries before the chicken embryo is capable of nociception and pain sensation. Optical spectroscopic methods enable an early determination of the sex. In this study, a novel method based on two-wavelength in ovo fluorescence excitation is described. More than 1600 eggs were examined. In ovo fluorescence was sequentially excited at 532 nm and 785 nm. The fluorescence intensities of the spectral regions behave inversely with respect to sex. It is shown that the observed sex-related differences in the fluorescence intensities are based on the embryonic hemoglobin synthesis. The accuracy of sex determination is 96% for both sexes. The hatching rate is not reduced compared to an equivalent reference group.


Chickens , Sex Determination Analysis , Female , Chick Embryo , Animals , Male , Spectrometry, Fluorescence/methods , Sex Determination Analysis/methods , Eggs , Ovum
7.
Clin Neuropathol ; 42(1): 2-14, 2023.
Article En | MEDLINE | ID: mdl-36472392

Raman spectroscopy is an optical technology that probes tissue composition and is envisioned for clinical applications in neurosurgery. Here, we provide an overview of basic and translational research addressing brain tumor delineation and diagnosis and identify potential scenarios for routine clinical use of Raman spectroscopy. Moreover, we discuss the practical technical requirements in the context of daily use as well as open questions regarding automated tissue assessment.


Brain Neoplasms , Spectrum Analysis, Raman , Humans , Brain Neoplasms/diagnosis , Brain Neoplasms/surgery , Neurosurgical Procedures/methods , Spectrum Analysis, Raman/methods
8.
Sci Rep ; 12(1): 18846, 2022 11 07.
Article En | MEDLINE | ID: mdl-36344626

Recent advances in label-free histology promise a new era for real-time diagnosis in neurosurgery. Deep learning using autofluorescence is promising for tumor classification without histochemical staining process. The high image resolution and minimally invasive diagnostics with negligible tissue damage is of great importance. The state of the art is raster scanning endoscopes, but the distal lens optics limits the size. Lensless fiber bundle endoscopy offers both small diameters of a few 100 microns and the suitability as single-use probes, which is beneficial in sterilization. The problem is the inherent honeycomb artifacts of coherent fiber bundles (CFB). For the first time, we demonstrate an end-to-end lensless fiber imaging with exploiting the near-field. The framework includes resolution enhancement and classification networks that use single-shot CFB images to provide both high-resolution imaging and tumor diagnosis. The well-trained resolution enhancement network not only recovers high-resolution features beyond the physical limitations of CFB, but also helps improving tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps increasing the classification accuracy from 90.8 to 95.6%. The novel technique enables histological real-time imaging with lensless fiber endoscopy and is promising for a quick and minimally invasive intraoperative treatment and cancer diagnosis in neurosurgery.


Endoscopes , Neoplasms , Diagnostic Imaging , Endoscopy , Neoplasms/diagnostic imaging
9.
J R Soc Interface ; 19(192): 20220209, 2022 07.
Article En | MEDLINE | ID: mdl-35857926

The elucidation of biomechanics furthers our understanding of brain tumour biology. Brillouin spectroscopy is a new optical method that addresses viscoelastic properties down to subcellular resolution in a contact-free manner. Moreover, it can be combined with Raman spectroscopy to obtain co-localized biochemical information. Here, we applied co-registered Brillouin and Raman spectroscopy to U87-MG human glioblastoma cells in vitro. Using two-dimensional and three-dimensional cultures, we related biomechanical properties to local biochemical composition at the subcellular level, as well as the cell phenotype. Brillouin and Raman mapping of adherent cells showed that the nucleus and nucleoli are stiffer than the perinuclear region and the cytoplasm. The biomechanics of the cell cytoplasm is affected by culturing conditions, i.e. cells grown as spheroids are stiffer than adherent cells. Inside the spheroids, the presence of lipid droplets as assessed by Raman spectroscopy revealed higher Brillouin shifts that are not related to a local increase in stiffness, but are due to a higher refractive index combined with a lower mass density. This highlights the importance of locally defined biochemical reference data for a correct interpretation of the Brillouin shift of cells and tissues in future studies investigating the biomechanics of brain tumour models by Brillouin spectroscopy.


Brain Neoplasms , Glioblastoma , Biomechanical Phenomena , Humans , Phenotype , Spectrum Analysis, Raman/methods
10.
Opt Express ; 30(4): 5051-5062, 2022 Feb 14.
Article En | MEDLINE | ID: mdl-35209476

Recently, ferroelectric domain walls (DWs) have attracted considerable attention due to their intrinsic topological effects and their huge potential for optoelectronic applications. In contrast, many of the underlying physical properties and phenomena are not well characterized. In this regard, analyzing the vibrational properties, e.g. by Raman spectroscopy, provides direct access to the various local material properties, such as strains, defects or electric fields. While the optical phonon spectra of DWs have been widely investigated in the past, no reports on the acoustic phonon properties of DWs exist. In this work, we present a joint Raman and Brillouin visualization of ferroelectric DWs in the model ferroelectric lithium niobate. This is possible by using a combined Raman and virtually imaged phased array Brillouin setup. Here, we show that DWs can be visualized via frequency shifts observed in the acoustic phonons, as well. The observed contrast then is qualitatively explained by models adapted from Raman spectroscopy. This work, hence, provides a novel route to study ferroelectric DWs and their intrinsic mechanical properties.

11.
Adv Sci (Weinh) ; 9(11): e2105059, 2022 04.
Article En | MEDLINE | ID: mdl-35156333

Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.


Actins , Silicon Dioxide , Glass , Silicon Dioxide/chemistry , Skeleton
12.
Front Cell Dev Biol ; 10: 814746, 2022.
Article En | MEDLINE | ID: mdl-35186930

Cephalopod mollusks are endowed with an impressive range of features that have captured the attention of scientists from different fields, the imaginations of artists, and the interests of the public. The ability to spontaneously regrow lost or damaged structures quickly and functionally is among one of the most notable peculiarities that cephalopods possess. Microscopical imaging techniques represent useful tools for investigating the regenerative processes in several species, from invertebrates to mammals. However, these techniques have had limited use in cephalopods mainly due to the paucity of specific and commercially available markers. In addition, the commonly used immunohistochemical staining methods provide data that are specific to the antigens studied. New microscopical methods were recently applied to vertebrates to investigate regenerative events. Among them, multiphoton microscopy appears promising. For instance, it does not depend on species-related epitopes, taking advantage of the specific characteristics of tissues and allowing for its use in a species-independent way. Here, we illustrate the results obtained by applying this label-free imaging technique to the injured arm of Octopus vulgaris, a complex structure often subject to injury in the wild. This approach allowed for the characterization of the entire tissue arm architecture (muscular layers, nerve component, connective tissues, etc.) and elements usually hardly detectable (such as vessels, hemocytes, and chromatophores). More importantly, it also provided morpho-chemical information which helped decipher the regenerative phases after damage, from healing to complete arm regrowth, thereby appearing promising for regenerative studies in cephalopods and other non-model species.

13.
Clin Hemorheol Microcirc ; 79(1): 179-192, 2021.
Article En | MEDLINE | ID: mdl-34487036

BACKGROUND: Heart valves are exposed to a highly dynamic environment and underlie high tensile and shear forces during opening and closing. Therefore, analysis of mechanical performance of novel heart valve bioprostheses materials, like SULEEI-treated bovine pericardium, is essential and usually carried out by uniaxial tensile tests. Nevertheless, major drawbacks are the unidirectional strain, which does not reflect the in vivo condition and the deformation of the sample material. An alternative approach for measurement of biomechanical properties is offered by Brillouin confocal microscopy (BCM), a novel, non-invasive and three-dimensional method based on the interaction of light with acoustic waves. OBJECTIVE: BCM is a powerful tool to determine viscoelastic tissue properties and is, for the first time, applied to characterize novel biological graft materials, such as SULEEI-treated bovine pericardium. Therefore, the method has to be validated as a non-invasive alternative to conventional uniaxial tensile tests. METHODS: Vibratome sections of SULEEI-treated bovine pericardium (decellularized, riboflavin/UV-cross-linked and low-energy electron irradiated) as well as native and GA-fixed controls (n = 3) were analyzed by BCM. In addition, uniaxial tensile tests were performed on equivalent tissue samples and Young's modulus as well as length of toe region were analyzed from stress-strain diagrams. The structure of the extracellular matrix (ECM), especially collagen and elastin, was investigated by multiphoton microscopy (MPM). RESULTS: SULEEI-treated pericardium exhibited a significantly higher Brillouin shift and hence higher tissue stiffness in comparison to native and GA-fixed controls (native: 5.6±0.2 GHz; GA: 5.5±0.1 GHz; SULEEI: 6.3±0.1 GHz; n = 3, p < 0.0001). Similarly, a significantly higher Young's modulus was detected in SULEEI-treated pericardia in comparison to native tissue (native: 30.0±10.4 MPa; GA: 31.8±10.7 MPa; SULEEI: 42.1±7.0 MPa; n = 3, p = 0.027). Native pericardia showed wavy and non-directional collagen fibers as well as thin, linear elastin fibers generating a loose matrix. The fibers of GA-fixed and SULEEI-treated pericardium were aligned in one direction, whereat the SULEEI-sample exhibited a much denser matrix. CONCLUSION: BCM is an innovative and non-invasive method to analyze elastic properties of novel pericardial graft materials with special mechanical requirements, like heart valve bioprostheses.


Bioprosthesis , Cardiac Surgical Procedures , Animals , Biomechanical Phenomena , Cattle , Materials Testing , Microscopy, Confocal , Pericardium
14.
Adv Mater ; 33(30): e2101682, 2021 Jul.
Article En | MEDLINE | ID: mdl-34085323

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual-but functional-hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin-atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.


Biomimetic Materials/chemistry , Biopolymers/chemistry , Chlorides/chemistry , Copper/chemistry , Nanocomposites/chemistry , Water Pollution, Chemical/prevention & control , Ammonia/chemistry , Catalysis , Humans , Molecular Conformation , Oxidation-Reduction , Porosity , Printing, Three-Dimensional , Structure-Activity Relationship
15.
Int J Mol Sci ; 22(7)2021 Mar 30.
Article En | MEDLINE | ID: mdl-33808232

The angiotensin receptor/neprilysin inhibitor Sacubitril/Valsartan (Sac/Val) has been shown to be beneficial in patients suffering from heart failure with reduced ejection fraction (HFrEF). However, the impact of Sac/Val in patients presenting with heart failure with preserved ejection fraction (HFpEF) is not yet clearly resolved. The present study aimed to reveal the influence of the drug on the functionality of the myocardium, the skeletal muscle, and the vasculature in a rat model of HFpEF. Female obese ZSF-1 rats received Sac/Val as a daily oral gavage for 12 weeks. Left ventricle (LV) function was assessed every four weeks using echocardiography. Prior to organ removal, invasive hemodynamic measurements were performed in both ventricles. Vascular function of the carotid artery and skeletal muscle function were monitored. Sac/Val treatment reduced E/é ratios, left ventricular end diastolic pressure (LVEDP) and myocardial stiffness as well as myocardial fibrosis and heart weight compared to the obese control group. Sac/Val slightly improved endothelial function in the carotid artery but had no impact on skeletal muscle function. Our results demonstrate striking effects of Sac/Val on the myocardial structure and function in a rat model of HFpEF. While vasodilation was slightly improved, functionality of the skeletal muscle remained unaffected.


Aminobutyrates/pharmacology , Biphenyl Compounds/pharmacology , Heart Failure/drug therapy , Heart Failure/physiopathology , Muscle, Skeletal/drug effects , Valsartan/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Animals , Connectin/metabolism , Cyclic GMP/blood , Diastole/drug effects , Diastole/physiology , Disease Models, Animal , Drug Combinations , Electrocardiography , Female , Fibrosis , Glycated Hemoglobin/analysis , Muscle, Skeletal/physiology , Muscular Atrophy/drug therapy , Muscular Atrophy/physiopathology , Natriuretic Peptide, Brain/blood , Peptide Fragments/blood , Phosphorylation/drug effects , Rats, Mutant Strains , Ventricular Function, Left/drug effects
16.
Sci Rep ; 11(1): 5834, 2021 03 12.
Article En | MEDLINE | ID: mdl-33712671

Aortic valve sclerosis is characterized as the thickening of the aortic valve without obstruction of the left ventricular outflow. It has a prevalence of 30% in people over 65 years old. Aortic valve sclerosis represents a cardiovascular risk marker because it may progress to moderate or severe aortic valve stenosis. Thus, the early recognition and management of aortic valve sclerosis are of cardinal importance. We examined the aortic valve geometry and structure from healthy C57Bl6 wild type and age-matched hyperlipidemic ApoE-/- mice with aortic valve sclerosis using optical coherence tomography (OCT) and multiphoton microscopy (MPM) and compared results with histological analyses. Early fibrotic thickening, especially in the tip region of the native aortic valve leaflets from the ApoE-/- mice, was detectable in a precise spatial resolution using OCT. Evaluation of the second harmonic generation signal using MPM demonstrated that collagen content decreased in all aortic valve leaflet regions in the ApoE-/- mice. Lipid droplets and cholesterol crystals were detected using coherent anti-Stokes Raman scattering in the tissue from the ApoE-/- mice. Here, we demonstrated that OCT and MPM, which are fast and precise contactless imaging approaches, are suitable for defining early morphological and structural alterations of sclerotic murine aortic valves.


Aortic Valve Disease/pathology , Aortic Valve/pathology , Apolipoproteins E/genetics , Animals , Aortic Valve Disease/genetics , Female , Gene Deletion , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Tomography, Optical Coherence
17.
Aging Cell ; 19(10): e13214, 2020 10.
Article En | MEDLINE | ID: mdl-32898317

The dauer larva of Caenorhabditis elegans, destined to survive long periods of food scarcity and harsh environment, does not feed and has a very limited exchange of matter with the exterior. It was assumed that the survival time is determined by internal energy stores. Here, we show that ethanol can provide a potentially unlimited energy source for dauers by inducing a controlled metabolic shift that allows it to be metabolized into carbohydrates, amino acids, and lipids. Dauer larvae provided with ethanol survive much longer and have greater desiccation tolerance. On the cellular level, ethanol prevents the deterioration of mitochondria caused by energy depletion. By modeling the metabolism of dauers of wild-type and mutant strains with and without ethanol, we suggest that the mitochondrial health and survival of an organism provided with an unlimited source of carbon depends on the balance between energy production and toxic product(s) of lipid metabolism.


Caenorhabditis elegans/metabolism , Ethanol/metabolism , Animals , Desiccation/methods , Larva , Lipid Metabolism
19.
Neurooncol Adv ; 2(1): vdaa035, 2020.
Article En | MEDLINE | ID: mdl-32642692

BACKGROUND: Label-free multiphoton microscopy has been suggested for intraoperative recognition and delineation of brain tumors. For any future clinical application, appropriate approaches for image acquisition and analysis have to be developed. Moreover, an evaluation of the reliability of the approach, taking into account inter- and intrapatient variability, is needed. METHODS: Coherent anti-Stokes Raman scattering (CARS), two-photon excited fluorescence (TPEF), and second-harmonic generation were acquired on cryosections of brain tumors of 382 patients and 28 human nontumor brain samples. Texture parameters of those images were calculated and used as input for linear discriminant analysis. RESULTS: The combined analysis of texture parameters of the CARS and TPEF signal proved to be most suited for the discrimination of nontumor brain versus brain tumors (low- and high-grade astrocytoma, oligodendroglioma, glioblastoma, recurrent glioblastoma, brain metastases of lung, colon, renal, and breast cancer and of malignant melanoma) leading to a correct rate of 96% (sensitivity: 96%, specificity: 100%). To approximate the clinical setting, the results were validated on 42 fresh, unfixed tumor biopsies. 82% of the tumors and, most important, all of the nontumor samples were correctly recognized. An image resolution of 1 µm was sufficient to distinguish brain tumors and nontumor brain. Moreover, the vast majority of single fields of view of each patient's sample were correctly classified with high probabilities, which is important for clinical translation. CONCLUSION: Label-free multiphoton imaging might allow fast and accurate intraoperative delineation of primary and secondary brain tumors in combination with endoscopic systems.

20.
Sci Rep ; 10(1): 12359, 2020 07 23.
Article En | MEDLINE | ID: mdl-32704100

Cerebral aneurysms are abnormal focal dilatations of arterial vessel walls with pathological vessel structure alterations. Sudden rupture can lead to a subarachnoid hemorrhage, which is associated with a high mortality. Therefore, the origin of cerebral aneurysms as well as the progression to the point of rupture needs to be further investigated. Label-free multimodal multiphoton microscopy (MPM) was performed on resected human aneurysm domes and integrated three modalities: coherent anti-Stokes Raman scattering, endogenous two-photon fluorescence and second harmonic generation. We showed that MPM is a completely label-free and real-time powerful tool to detect pathognomonic histopathological changes in aneurysms, e.g. thickening and thinning of vessel walls, intimal hyperplasia, intra-wall haemorrhage, calcification as well as atherosclerotic changes. In particular, the loss or fragmentation of elastin as well as fibromatous wall remodelling appeared very distinct. Remarkably, cholesterol and lipid deposits were clearly visible in the multiphoton images. MPM provides morphological and biochemical information that are crucial for understanding the mechanisms of aneurysm formation and progression.


Intracranial Aneurysm , Intracranial Arteriosclerosis , Tunica Intima , Vascular Calcification , Humans , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/pathology , Intracranial Arteriosclerosis/metabolism , Intracranial Arteriosclerosis/pathology , Microscopy, Fluorescence, Multiphoton , Spectrum Analysis, Raman , Tunica Intima/metabolism , Tunica Intima/pathology , Vascular Calcification/metabolism , Vascular Calcification/pathology
...