Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(14): 8271-8285, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38894680

RESUMEN

Formaldehyde (FA) is a recognized environmental and metabolic toxin implicated in cancer development and aging. Inherited mutations in the FA-detoxifying enzymes ADH5 and ALDH2 genes lead to FA overload in the severe multisystem AMeD syndrome. FA accumulation causes genome damage including DNA-protein-, inter- and intra-strand crosslinks and oxidative lesions. However, the influence of distinct DNA repair systems on organismal FA resistance remains elusive. We have here investigated the consequence of a range of DNA repair mutants in a model of endogenous FA overload generated by downregulating the orthologs of human ADH5 and ALDH2 in C. elegans. We have focused on the distinct components of nucleotide excision repair (NER) during developmental growth, reproduction and aging. Our results reveal three distinct modes of repair of FA-induced DNA damage: Transcription-coupled repair (TCR) operating NER-independently during developmental growth or through NER during adulthood, and, in concert with global-genome (GG-) NER, in the germline and early embryonic development. Additionally, we show that the Cockayne syndrome B (CSB) factor is involved in the resolution of FA-induced DNA-protein crosslinks, and that the antioxidant and FA quencher N-acetyl-l-cysteine (NAC) reverses the sensitivity of detoxification and DNA repair defects during development, suggesting a therapeutic intervention to revert FA-pathogenic consequences.


Asunto(s)
Envejecimiento , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Daño del ADN , Reparación del ADN , Formaldehído , Reproducción , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/crecimiento & desarrollo , Formaldehído/toxicidad , Animales , Reproducción/efectos de los fármacos , Reproducción/genética , Envejecimiento/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Mutación , Humanos , Transcripción Genética/efectos de los fármacos , Acetilcisteína/farmacología , Aldehído Oxidorreductasas
2.
DNA Repair (Amst) ; 138: 103679, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38640601

RESUMEN

Neurodegenerative diseases are the second most prevalent cause of death in industrialized countries. Alzheimer's Disease is the most widespread and also most acknowledged form of dementia today. Together with Parkinson's Disease they account for over 90 % cases of neurodegenerative disorders caused by proteopathies. Far less known are the neurodegenerative pathologies in DNA repair deficiency syndromes. Such diseases like Cockayne - or Werner Syndrome are described as progeroid syndromes - diseases that cause the premature ageing of the affected persons, and there are clear implications of such diseases in neurologic dysfunction and degeneration. In this review, we aim to draw the attention on commonalities between proteopathy-associated neurodegeneration and neurodegeneration caused by DNA repair defects and discuss how mitochondria are implicated in the development of both disorder classes. Furthermore, we highlight how nematodes are a valuable and indispensable model organism to study conserved neurodegenerative processes in a fast-forward manner.


Asunto(s)
Reparación del ADN , Enfermedades Neurodegenerativas , Humanos , Animales , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Trastornos por Deficiencias en la Reparación del ADN/genética , Trastornos por Deficiencias en la Reparación del ADN/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo
3.
Cell Rep ; 42(12): 113577, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38100354

RESUMEN

Neurodegenerative disorders, such as Alzheimer's disease (AD) or Huntington's disease (HD), are linked to protein aggregate neurotoxicity. According to the "cholinergic hypothesis," loss of acetylcholine (ACh) signaling contributes to the AD pathology, and therapeutic restoration of ACh signaling is a common treatment strategy. How disease causation and the effect of ACh are linked to protein aggregation and neurotoxicity remains incompletely understood, thus limiting the development of more effective therapies. Here, we show that BAZ-2, the Caenorhabditis elegans ortholog of human BAZ2B, limits ACh signaling. baz-2 mutations reverse aggregation and toxicity of amyloid-beta as well as polyglutamine peptides, thereby restoring health and lifespan in nematode models of AD and HD, respectively. The neuroprotective effect of Δbaz-2 is mediated by choline acetyltransferase, phenocopied by ACh-esterase depletion, and dependent on ACh receptors. baz-2 reduction or ectopic ACh treatment augments proteostasis via induction of the endoplasmic reticulum unfolded protein response and the ubiquitin proteasome system.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Huntington , Factores Generales de Transcripción , Animales , Humanos , Acetilcolina/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas que Contienen Bromodominio , Caenorhabditis elegans/metabolismo , Proteostasis , Factores Generales de Transcripción/metabolismo
4.
EMBO J ; 40(21): e107568, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617299

RESUMEN

While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Péptidos y Proteínas de Señalización Intracelular/química , Proteínas del Tejido Nervioso/química , alfa-Sinucleína/química , Secuencia de Aminoácidos , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Animales , Sitios de Unión , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos/genética , Péptidos/metabolismo , Agregado de Proteínas , Análisis por Matrices de Proteínas , Unión Proteica , Transducción de Señal , Electricidad Estática , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
5.
Prog Neurobiol ; 198: 101907, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32926945

RESUMEN

Protein misfolding and aggregation are hallmarks of neurodegenerative diseases such as Alzheimer's disease (AD). In AD, the accumulation and aggregation of tau and the amyloid-beta peptide Aß1-42 precedes the onset of AD symptoms. Modelling the aggregation of Aß is technically very challenging in vivo due to its size of only 42 aa. Here, we employed sub-stoichiometric labelling of Aß1-42 in C. elegans to enable tracking of the peptide in vivo, combined with the "native" aggregation of unlabeled Aß1-42. Expression of Aß1-42 leads to severe physiological defects, neuronal dysfunction and neurodegeneration. Moreover, we can demonstrate spreading of neuronal Aß to other tissues. Fluorescence lifetime imaging microscopy enabled a quantification of the formation of amyloid fibrils with ageing and revealed a heterogenic yet specific pattern of aggregation. Notably, we found that Aß aggregation starts in a subset of neurons of the anterior head ganglion, the six IL2 neurons. We further demonstrate that cell-specific, RNAi-mediated depletion of Aß in these IL2 neurons systemically delays Aß aggregation and pathology.


Asunto(s)
Neuronas , Enfermedad de Alzheimer , Amiloide , Péptidos beta-Amiloides , Animales , Caenorhabditis elegans , Interleucina-2 , Fragmentos de Péptidos , Virulencia
6.
J Vis Exp ; (157)2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32281971

RESUMEN

Amyloid fibrils are associated with a number of neurodegenerative diseases such as Huntington's, Parkinson's, or Alzheimer's disease. These amyloid fibrils can sequester endogenous metastable proteins as well as components of the proteostasis network (PN) and thereby exacerbate protein misfolding in the cell. There are a limited number of tools available to assess the aggregation process of amyloid proteins within an animal. We present a protocol for fluorescence lifetime microscopy (FLIM) that allows monitoring as well as quantification of the amyloid fibrilization in specific cells, such as neurons, in a noninvasive manner and with the progression of aging and upon perturbation of the PN. FLIM is independent of the expression levels of the fluorophore and enables an analysis of the aggregation process without any further staining or bleaching. Fluorophores are quenched when they are in close vicinity of amyloid structures, which results in a decrease of the fluorescence lifetime. The quenching directly correlates with the aggregation of the amyloid protein. FLIM is a versatile technique that can be applied to compare the fibrilization process of different amyloid proteins, environmental stimuli, or genetic backgrounds in vivo in a non-invasive manner.


Asunto(s)
Caenorhabditis elegans/metabolismo , Fluorescencia , Imagen Óptica/métodos , Animales
7.
Autophagy ; 16(5): 878-899, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31354022

RESUMEN

Aging is associated with a gradual decline of cellular proteostasis, giving rise to devastating protein misfolding diseases, such as Alzheimer disease (AD) or Parkinson disease (PD). These diseases often exhibit a complex pathology involving non-cell autonomous proteotoxic effects, which are still poorly understood. Using Caenorhabditis elegans we investigated how local protein misfolding is affecting neighboring cells and tissues showing that misfolded PD-associated SNCA/α-synuclein is accumulating in highly dynamic endo-lysosomal vesicles. Irrespective of whether being expressed in muscle cells or dopaminergic neurons, accumulated proteins were transmitted into the hypodermis with increasing age, indicating that epithelial cells might play a role in remote degradation when the local endo-lysosomal degradation capacity is overloaded. Cell biological and genetic approaches revealed that inter-tissue dissemination of SNCA was regulated by endo- and exocytosis (neuron/muscle to hypodermis) and basement membrane remodeling (muscle to hypodermis). Transferred SNCA conformers were, however, inefficiently cleared and induced endo-lysosomal membrane permeabilization. Remarkably, reducing INS (insulin)-IGF1 (insulin-like growth factor 1) signaling provided protection by maintaining endo-lysosomal integrity. This study suggests that the degradation of lysosomal substrates is coordinated across different tissues in metazoan organisms. Because the chronic dissemination of poorly degradable disease proteins into neighboring tissues exerts a non-cell autonomous toxicity, this implies that restoring endo-lysosomal function not only in cells with pathological inclusions, but also in apparently unaffected cell types might help to halt disease progression.Abbreviations: AD: Alzheimer disease; BM: basement membrane; BWM: body wall muscle; CEP: cephalic sensilla; CLEM: correlative light and electron microscopy; CTNS-1: cystinosin (lysosomal protein) homolog; DA: dopaminergic; DAF-2: abnormal dauer formation; ECM: extracellular matrix; FLIM: fluorescence lifetime imaging microscopy; fps: frames per second; GFP: green fluorescent protein; HPF: high pressure freezing; IGF1: insulin-like growth factor 1; INS: insulin; KD: knockdown; LMP: lysosomal membrane permeabilization; MVB: multivesicular body; NOC: nocodazole; PD: Parkinson disease; RFP: red fluorescent protein; RNAi: RNA interference; sfGFP: superfolder GFP; SNCA: synuclein alpha; TEM: transmission electron microscopy; TNTs: tunneling nanotubes; TCSPC: time correlated single photon counting; YFP: yellow fluorescent protein.


Asunto(s)
Envejecimiento/fisiología , Autofagia/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , alfa-Sinucleína/metabolismo , Animales , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Exocitosis/fisiología , Humanos , Lisosomas/metabolismo
8.
Nat Commun ; 10(1): 486, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700723

RESUMEN

Drebrin (DBN) regulates cytoskeletal functions during neuronal development, and is thought to contribute to structural and functional synaptic changes associated with aging and Alzheimer's disease. Here we show that DBN coordinates stress signalling with cytoskeletal dynamics, via a mechanism involving kinase ataxia-telangiectasia mutated (ATM). An excess of reactive oxygen species (ROS) stimulates ATM-dependent phosphorylation of DBN at serine-647, which enhances protein stability and accounts for improved stress resilience in dendritic spines. We generated a humanized DBN Caenorhabditis elegans model and show that a phospho-DBN mutant disrupts the protective ATM effect on lifespan under sustained oxidative stress. Our data indicate a master regulatory function of ATM-DBN in integrating cytosolic stress-induced signalling with the dynamics of actin remodelling to provide protection from synapse dysfunction and ROS-triggered reduced lifespan. They further suggest that DBN protein abundance governs actin filament stability to contribute to the consequences of oxidative stress in physiological and pathological conditions.


Asunto(s)
Actinas/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Estrés Oxidativo , Actinas/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Caenorhabditis elegans , Células Cultivadas , Espinas Dendríticas/genética , Espinas Dendríticas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuropéptidos/genética , Fosforilación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA