Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 29
1.
Phys Chem Chem Phys ; 26(14): 10998-11013, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38526443

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid ß, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, i.e. the de novo formation of amyloid fibrils, has been shown to be accelerated by lipids. However, the exact mechanism of this acceleration is still mostly unclear. Here we use a range of scattering methods, such as dynamic light scattering (DLS) and small angle X-ray and neutron scattering (SAXS and SANS) to obtain structural information on the binding of α-synuclein to model membranes formed from negatively charged lipids and their co-assembly into amyloid fibrils. We find that the model membranes take an active role in the reaction. The binding of α synuclein to the model membranes immediately induces a major structural change in the lipid assembly, which leads to a break-up into small and mostly disc- or rod-like lipid-protein particles. This transition can be reversed by temperature changes or proteolytic protein removal. Incubation of the small lipid-α-synuclein particles for several hours, however, leads to amyloid fibril formation, whereby the lipids are incorporated into the amyloid fibrils.


Amyloid beta-Peptides , alpha-Synuclein , alpha-Synuclein/chemistry , Scattering, Small Angle , X-Ray Diffraction , Amyloid/chemistry , Lipids
2.
Biochemistry ; 61(17): 1743-1756, 2022 09 06.
Article En | MEDLINE | ID: mdl-35944093

Parkinson's disease is associated with the aberrant aggregation of α-synuclein. Although the causes of this process are still unclear, post-translational modifications of α-synuclein are likely to play a modulatory role. Since α-synuclein is constitutively N-terminally acetylated, we investigated how this post-translational modification alters the aggregation behavior of this protein. By applying a three-pronged aggregation kinetics approach, we observed that N-terminal acetylation results in a reduced rate of lipid-induced aggregation and slows down both elongation and fibril-catalyzed aggregate proliferation. An analysis of the amyloid fibrils produced by the aggregation process revealed different morphologies for the acetylated and non-acetylated forms in both lipid-induced aggregation and seed-induced aggregation assays. In addition, we found that fibrils formed by acetylated α-synuclein exhibit a lower ß-sheet content. These findings indicate that N-terminal acetylation of α-synuclein alters its lipid-dependent aggregation behavior, reduces its rate of in vitro aggregation, and affects the structural properties of its fibrillar aggregates.


Amyloid , alpha-Synuclein , Acetylation , Amyloid/chemistry , Lipids , Protein Aggregates , Protein Processing, Post-Translational , alpha-Synuclein/chemistry
3.
Brain ; 145(3): 1038-1051, 2022 04 29.
Article En | MEDLINE | ID: mdl-35362022

Intraneuronal accumulation of aggregated α-synuclein is a pathological hallmark of Parkinson's disease. Therefore, mechanisms capable of promoting α-synuclein deposition bear important pathogenetic implications. Mutations of the glucocerebrosidase 1 (GBA) gene represent a prevalent Parkinson's disease risk factor. They are associated with loss of activity of a key enzyme involved in lipid metabolism, glucocerebrosidase, supporting a mechanistic relationship between abnormal α-synuclein-lipid interactions and the development of Parkinson pathology. In this study, the lipid membrane composition of fibroblasts isolated from control subjects, patients with idiopathic Parkinson's disease and Parkinson's disease patients carrying the L444P GBA mutation (PD-GBA) was assayed using shotgun lipidomics. The lipid profile of PD-GBA fibroblasts differed significantly from that of control and idiopathic Parkinson's disease cells. It was characterized by an overall increase in sphingolipid levels. It also featured a significant increase in the proportion of ceramide, sphingomyelin and hexosylceramide molecules with shorter chain length and a decrease in the percentage of longer-chain sphingolipids. The extent of this shift was correlated to the degree of reduction of fibroblast glucocerebrosidase activity. Lipid extracts from control and PD-GBA fibroblasts were added to recombinant α-synuclein solutions. The kinetics of α-synuclein aggregation were significantly accelerated after addition of PD-GBA extracts as compared to control samples. Amyloid fibrils collected at the end of these incubations contained lipids, indicating α-synuclein-lipid co-assembly. Lipids extracted from α-synuclein fibrils were also analysed by shotgun lipidomics. Data revealed that the lipid content of these fibrils was significantly enriched by shorter-chain sphingolipids. In a final set of experiments, control and PD-GBA fibroblasts were incubated in the presence of the small molecule chaperone ambroxol. This treatment restored glucocerebrosidase activity and sphingolipid levels and composition of PD-GBA cells. It also reversed the pro-aggregation effect that lipid extracts from PD-GBA fibroblasts had on α-synuclein. Taken together, the findings of this study indicate that the L444P GBA mutation and consequent enzymatic loss are associated with a distinctly altered membrane lipid profile that provides a biological fingerprint of this mutation in Parkinson fibroblasts. This altered lipid profile could also be an indicator of increased risk for α-synuclein aggregate pathology.


Glucosylceramidase , Parkinson Disease , Fibroblasts/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Mutation/genetics , Parkinson Disease/metabolism , Sphingolipids , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
5.
Nat Commun ; 12(1): 7289, 2021 12 15.
Article En | MEDLINE | ID: mdl-34911929

Liquid-liquid phase separation or LLPS of proteins is a field of mounting importance and the value of quantitative kinetic and thermodynamic characterization of LLPS is increasingly recognized. We present a method, Capflex, which allows rapid and accurate quantification of key parameters for LLPS: Dilute phase concentration, relative droplet size distributions, and the kinetics of droplet formation and maturation into amyloid fibrils. The binding affinity between the polypeptide undergoing LLPS and LLPS-modulating compounds can also be determined. We apply Capflex to characterize the LLPS of Human DEAD-box helicase-4 and the coacervate system ssDNA/RP3. Furthermore, we study LLPS and the aberrant liquid-to-solid phase transition of α-synuclein. We quantitatively measure the decrease in dilute phase concentration as the LLPS of α-synuclein is followed by the formation of Thioflavin-T positive amyloid aggregates. The high information content, throughput and the versatility of Capflex makes it a valuable tool for characterizing biomolecular LLPS.


DEAD-box RNA Helicases/chemistry , Peptides/chemistry , alpha-Synuclein/chemistry , Amyloid/chemistry , Benzothiazoles/chemistry , Kinetics , Phase Transition , Thermodynamics
6.
Biophys Chem ; 273: 106534, 2021 06.
Article En | MEDLINE | ID: mdl-33832803

Mutations in the gene GBA, encoding glucocerebrosidase (GCase), are the highest genetic risk factor for Parkinson's disease (PD). GCase is a lysosomal glycoprotein responsible for the hydrolysis of glucosylceramide into glucose and ceramide. Mutations in GBA cause a decrease in GCase activity, stability and protein levels which in turn lead to the accumulation of GCase lipid substrates as well as α-synuclein (αS) in vitro and in vivo. αS is the main constituent of Lewy bodies found in the brain of PD patients and an increase in its levels was found to be associated with a decrease in GCase activity/protein levels in vitro and in vivo. In this review, we describe the reported biophysical and biochemical changes that GBA mutations can induce in GCase activity and stability as well as the current overview of the levels of GCase protein/activity, αS and lipids measured in patient-derived samples including post-mortem brains, stem cell-derived neurons, cerebrospinal fluid, blood and fibroblasts as well as in SH-SY5Y cells. In particular, we report how the levels of αS and lipids are affected by/correlated to significant changes in GCase activity/protein levels and which cellular pathways are activated or disrupted by these changes in each model. Finally, we review the current strategies used to revert the changes in the levels of GCase activity/protein, αS and lipids in the context of PD.


Glucosylceramidase/metabolism , Lipids/chemistry , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Glucosylceramidase/chemistry , Humans , Models, Molecular , alpha-Synuclein/chemistry
7.
J Phys Chem Lett ; 10(24): 7872-7877, 2019 Dec 19.
Article En | MEDLINE | ID: mdl-31790267

The deposition of coassemblies made of the small presynaptic protein, α-synuclein, and lipids in the brains of patients is the hallmark of Parkinson's disease. In this study, we used natural abundance 13C and 31P magic-angle spinning nuclear magnetic resonance spectroscopy together with cryo-electron microscopy and differential scanning calorimetry to characterize the fibrils formed by α-synuclein in the presence of vesicles made of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine or 1,2-dilauroyl-sn-glycero-3-phospho-L-serine. Our results show that these lipids coassemble with α-synuclein molecules to give thin and curly amyloid fibrils. The coassembly leads to slower and more isotropic reorientation of lipid molecular segments and a decrease in both the temperature and enthalpy of the lipid chain-melting compared with those in the protein-free lipid lamellar phase. These findings provide new insights into the properties of lipids within protein-lipid assemblies that can be associated with Parkinson's disease.


Amyloid/chemistry , Lipid Bilayers/chemistry , alpha-Synuclein/chemistry , Kinetics , Molecular Structure , Phase Transition , Protein Binding , Serine/chemistry , Structure-Activity Relationship , Thermodynamics , Transition Temperature
8.
Elife ; 82019 08 21.
Article En | MEDLINE | ID: mdl-31389332

Removing or preventing the formation of [Formula: see text]-synuclein aggregates is a plausible strategy against Parkinson's disease. To this end, we have engineered the [Formula: see text]-wrapin AS69 to bind monomeric [Formula: see text]-synuclein with high affinity. In cultured cells, AS69 reduced the self-interaction of [Formula: see text]-synuclein and formation of visible [Formula: see text]-synuclein aggregates. In flies, AS69 reduced [Formula: see text]-synuclein aggregates and the locomotor deficit resulting from [Formula: see text]-synuclein expression in neuronal cells. In biophysical experiments in vitro, AS69 highly sub-stoichiometrically inhibited both primary and autocatalytic secondary nucleation processes, even in the presence of a large excess of monomer. We present evidence that the AS69-[Formula: see text]-synuclein complex, rather than the free AS69, is the inhibitory species responsible for sub-stoichiometric inhibition of secondary nucleation. These results represent a new paradigm that high affinity monomer binders can lead to strongly sub-stoichiometric inhibition of nucleation processes.


Amyloid/antagonists & inhibitors , Recombinant Proteins/metabolism , alpha-Synuclein/metabolism , HEK293 Cells , Humans , Protein Aggregation, Pathological , Protein Multimerization/drug effects , Recombinant Proteins/genetics
9.
Chem Sci ; 9(25): 5506-5516, 2018 Jul 07.
Article En | MEDLINE | ID: mdl-30061982

Parkinson's disease is one of the major neurodegenerative disorders affecting the ageing populations of the modern world. One of the hallmarks of this disease is the deposition of aggregates, mainly of the small pre-synaptic protein α-synuclein (AS), in the brains of patients. Several very significantly modified forms of AS have been found in these deposits including those resulting from truncations of the protein at its C-terminus. Here, we report how two physiologically relevant C-terminal truncations of AS, AS(1-119) and AS(1-103), where either half or virtually all of the C-terminal domain, respectively, has been truncated, affect the mechanism of AS aggregation and the properties of the fibrils formed. In particular, we have found that the deletion of these C-terminal residues induces a shift of the pH region where autocatalytic secondary processes dominate the kinetics of AS aggregation towards higher pH values, from AS wild-type (pH 3.6-5.6) to AS(1-119) (pH 4.2-7.0) and AS(1-103) (pH 5.6-8.0). In addition, we found that both truncated variants formed protofibrils in the presence of lipid vesicles, but only those formed by AS(1-103) had the capacity to convert readily into mature fibrils. These results suggest that electrostatics play an important role in secondary nucleation, a key factor in aggregate proliferation, and in the conversion of AS fibrils from protofibrils to mature fibrils. In particular, our results demonstrate that sequence truncations of AS can shift the pH range where autocatalytic proliferation of fibrils is possible into the neutral, physiological regime, thus providing an explanation of the increased propensity of the C-truncated variants to aggregate in vivo.

10.
Chem Commun (Camb) ; 54(56): 7854-7857, 2018 Jul 10.
Article En | MEDLINE | ID: mdl-29951679

Oligomeric and protofibrillar aggregates that are populated along the pathway of amyloid fibril formation appear generally to be more toxic than the mature fibrillar state. In particular, α-synuclein, the protein associated with Parkinson's disease, forms kinetically trapped protofibrils in the presence of lipid vesicles. Here, we show that lipid-induced α-synuclein protofibrils can convert rapidly to mature fibrils at higher temperatures. Furthermore, we find that ß-synuclein, generally considered less aggregation prone than α-synuclein, forms protofibrils at higher temperatures. These findings highlight the importance of energy barriers in controlling the de novo formation and conversion of amyloid fibrils.

11.
ACS Chem Biol ; 13(8): 2308-2319, 2018 08 17.
Article En | MEDLINE | ID: mdl-29953201

The aggregation of α-synuclein, an intrinsically disordered protein that is highly abundant in neurons, is closely associated with the onset and progression of Parkinson's disease. We have shown previously that the aminosterol squalamine can inhibit the lipid induced initiation process in the aggregation of α-synuclein, and we report here that the related compound trodusquemine is capable of inhibiting not only this process but also the fibril-dependent secondary pathways in the aggregation reaction. We further demonstrate that trodusquemine can effectively suppress the toxicity of α-synuclein oligomers in neuronal cells, and that its administration, even after the initial growth phase, leads to a dramatic reduction in the number of α-synuclein inclusions in a Caenorhabditis elegans model of Parkinson's disease, eliminates the related muscle paralysis, and increases lifespan. On the basis of these findings, we show that trodusquemine is able to inhibit multiple events in the aggregation process of α-synuclein and hence to provide important information about the link between such events and neurodegeneration, as it is initiated and progresses. Particularly in the light of the previously reported ability of trodusquemine to cross the blood-brain barrier and to promote tissue regeneration, the present results suggest that this compound has the potential to be an important therapeutic candidate for Parkinson's disease and related disorders.


Cholestanes/pharmacology , Parkinson Disease/drug therapy , Protein Aggregates/drug effects , Protein Aggregation, Pathological/prevention & control , Spermine/analogs & derivatives , alpha-Synuclein/metabolism , Animals , Caenorhabditis elegans/physiology , Cell Line , Cholestanes/therapeutic use , Disease Models, Animal , Humans , Neurons/drug effects , Neurons/metabolism , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , Spermine/pharmacology , Spermine/therapeutic use
12.
Nat Chem ; 10(6): 673-683, 2018 06.
Article En | MEDLINE | ID: mdl-29736006

Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-ß peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aß42 (the 42-residue form of the amyloid-ß peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aß42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aß42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aß42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.


Amyloid beta-Peptides/metabolism , Cholesterol/metabolism , Lipid Bilayers/metabolism , Peptide Fragments/metabolism , Catalysis , Humans , Kinetics , Protein Binding
13.
Anal Chem ; 90(5): 3284-3290, 2018 03 06.
Article En | MEDLINE | ID: mdl-29313342

Elucidation of the fundamental interactions of proteins with biological membranes under native conditions is crucial for understanding the molecular basis of their biological function and malfunction. Notably, the large surface to volume ratio of living cells provides a molecular landscape for significant interactions of cellular components with membranes, thereby potentially modulating their function. However, such interactions can be challenging to probe using conventional biophysical methods due to the heterogeneity of the species and processes involved. Here, we use direct measurements of micron scale molecular diffusivity to detect and quantify the interactions of α-synuclein, associated with the etiology of Parkinson's disease, with negatively charged lipid vesicles. We further demonstrate that this microfluidic approach enables the characterization of size distributions of different binary mixtures of vesicles, which are not readily accessible using conventional light scattering techniques. Finally, the size distributions of the two α-synuclein conformations, free α-synuclein and membrane-bound α-synuclein, were resolved under varying lipid:protein ratios, thus, allowing the determination of the dissociation constant and the binding stoichiometry associated with this protein-lipid system. The microfluidic diffusional sizing platform allows these measurements to be performed on a time scale of minutes using microlitre volumes, thus, establishing the basis for an approach for the study of molecular interactions of heterogeneous systems under native conditions.


Unilamellar Liposomes/metabolism , alpha-Synuclein/metabolism , Diffusion , Microfluidic Analytical Techniques/methods , Particle Size , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Protein Binding , Unilamellar Liposomes/chemistry , alpha-Synuclein/chemistry
14.
J Parkinsons Dis ; 7(3): 433-450, 2017.
Article En | MEDLINE | ID: mdl-28671142

α-synuclein is a small protein abundantly expressed in the brain and mainly located in synaptic terminals. The conversion of α-synuclein into oligomers and fibrils is the hallmark of a range of neurodegenerative disorders including Parkinson's disease and dementia with Lewy bodies. α-synuclein is disordered in solution but can adopt an α-helical conformation upon binding to lipid membranes. This lipid-protein interaction plays an important role in its proposed biological function, i.e., synaptic plasticity, but can also entail the aggregation of the protein. Both the chemical properties of the lipids and the lipid-to-protein-ratio have been reported to modulate the aggregation propensity of α-synuclein. In this review, the influence of changes in the nature and levels of lipids on the aggregation propensity of α-synuclein in vivo and in vitro will be discussed within a common general framework. In particular, while biophysical measurements and kinetic analyses of the time courses of α-synuclein aggregation in the presence of different types of lipid vesicles allow a mechanistic dissection of the influence of the lipids on α-synuclein aggregation, biological studies of cellular and animal models of Parkinson's disease allow the determination of changes in lipid levels and properties associated with the disease.


Membrane Lipids/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological , alpha-Synuclein/metabolism , Animals , Humans , Membrane Lipids/chemistry , Parkinson Disease/etiology , alpha-Synuclein/chemistry
15.
Proc Natl Acad Sci U S A ; 114(6): E1009-E1017, 2017 02 07.
Article En | MEDLINE | ID: mdl-28096355

The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.


Protein Aggregates/drug effects , Protein Aggregation, Pathological/prevention & control , alpha-Synuclein/chemistry , Algorithms , Amino Acid Sequence , Animals , Animals, Genetically Modified , Biological Products/chemistry , Biological Products/pharmacology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Line, Tumor , Cholestanols/chemistry , Cholestanols/pharmacology , Humans , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Molecular Structure , Neuroblastoma/metabolism , Neuroblastoma/pathology , Paresis/genetics , Paresis/metabolism , Paresis/prevention & control , Parkinson Disease/metabolism , Protein Binding/drug effects , Protein Multimerization/drug effects , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
16.
Sci Rep ; 6: 36010, 2016 11 03.
Article En | MEDLINE | ID: mdl-27808107

α-Synuclein is an intrinsically disordered protein that is associated with the pathogenesis of Parkinson's disease through the processes involved in the formation of amyloid fibrils. α and ß-synuclein are homologous proteins found at comparable levels in presynaptic terminals but ß-synuclein has a greatly reduced propensity to aggregate and indeed has been found to inhibit α-synuclein aggregation. In this paper, we describe how sequence differences between α- and ß-synuclein affect individual microscopic processes in amyloid formation. In particular, we show that ß-synuclein strongly suppresses both lipid-induced aggregation and secondary nucleation of α-synuclein by competing for binding sites at the surfaces of lipid vesicles and fibrils, respectively. These results suggest that ß-synuclein can act as a natural inhibitor of α-synuclein aggregation by reducing both the initiation of its self-assembly and the proliferation of its aggregates.


Binding, Competitive , Protein Aggregates , Protein Aggregation, Pathological , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , beta-Synuclein/metabolism , Amino Acid Sequence , Hydrogen-Ion Concentration , Lipids/chemistry , Phosphatidylserines/chemistry , Protein Binding , Sequence Alignment , Surface Properties , beta-Synuclein/chemistry
17.
Proc Natl Acad Sci U S A ; 113(37): 10328-33, 2016 09 13.
Article En | MEDLINE | ID: mdl-27573854

Parkinson's disease is a highly debilitating neurodegenerative condition whose pathological hallmark is the presence in nerve cells of proteinacious deposits, known as Lewy bodies, composed primarily of amyloid fibrils of α-synuclein. Several missense mutations in the gene encoding α-synuclein have been associated with familial variants of Parkinson's disease and have been shown to affect the kinetics of the aggregation of the protein. Using a combination of experimental and theoretical approaches, we present a systematic in vitro study of the influence of disease-associated single-point mutations on the individual processes involved in α-synuclein aggregation into amyloid fibrils. We find that lipid-induced fibril production and surface catalyzed fibril amplification are the processes most strongly affected by these mutations and show that familial mutations can induce dramatic changes in the crucial processes thought to be associated with the initiation and spreading of the aggregation of α-synuclein.


Parkinson Disease/genetics , Protein Aggregation, Pathological/genetics , alpha-Synuclein/genetics , Amyloid/chemistry , Amyloid/genetics , Humans , Kinetics , Lipids/chemistry , Mutation , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Parkinson Disease/pathology , alpha-Synuclein/chemistry
18.
Proc Natl Acad Sci U S A ; 113(26): 7065-70, 2016 06 28.
Article En | MEDLINE | ID: mdl-27298346

Intracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson's disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein's native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein. In particular, we have observed that the binding of α-synuclein to model membranes is much stronger when the latter is in the fluid rather than the gel phase, and that this binding induces a segregation of the lipids into protein-poor and protein-rich populations. In addition, α-synuclein was found to aggregate at detectable rates only when interacting with membranes composed of the most soluble lipids investigated here. Overall, our results show that the chemical properties of lipids determine whether or not the lipids can trigger the aggregation of α-synuclein, thus affecting the balance between functional and aberrant behavior of the protein.


Cell Membrane/metabolism , Lipid Bilayers/chemistry , Parkinson Disease/metabolism , alpha-Synuclein/chemistry , Cell Membrane/chemistry , Humans , Kinetics , Lipid Bilayers/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism
19.
Sci Rep ; 6: 23732, 2016 Apr 05.
Article En | MEDLINE | ID: mdl-27046077

Gankyrin is an ankyrin-repeat oncoprotein whose overexpression has been implicated in the development of many cancer types. Elevated gankyrin levels are linked to aberrant cellular events including enhanced degradation of tumour suppressor protein p53, and inhibition of gankyrin activity has therefore been identified as an attractive anticancer strategy. Gankyrin interacts with several partner proteins, and a number of these protein-protein interactions (PPIs) are of relevance to cancer. Thus, molecules that bind the PPI interface of gankyrin and interrupt these interactions are of considerable interest. Herein, we report the discovery of a small molecule termed cjoc42 that is capable of binding to gankyrin. Cell-based experiments demonstrate that cjoc42 can inhibit gankyrin activity in a dose-dependent manner: cjoc42 prevents the decrease in p53 protein levels normally associated with high amounts of gankyrin, and it restores p53-dependent transcription and sensitivity to DNA damage. The results represent the first evidence that gankyrin is a "druggable" target with small molecules.


Benzenesulfonates/chemistry , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins/metabolism , Triazoles/chemistry , Antineoplastic Agents/chemistry , Aurora Kinase A/metabolism , Calorimetry , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Survival , DNA Damage , Escherichia coli/metabolism , Gene Expression Profiling , Humans , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Rad51 Recombinase/metabolism , Thermodynamics , Tumor Suppressor Protein p53/metabolism
20.
Sci Rep ; 5: 15449, 2015 Oct 26.
Article En | MEDLINE | ID: mdl-26498066

The free energy landscape theory has been very successful in rationalizing the folding behaviour of globular proteins, as this representation provides intuitive information on the number of states involved in the folding process, their populations and pathways of interconversion. We extend here this formalism to the case of the Aß40 peptide, a 40-residue intrinsically disordered protein fragment associated with Alzheimer's disease. By using an advanced sampling technique that enables free energy calculations to reach convergence also in the case of highly disordered states of proteins, we provide a precise structural characterization of the free energy landscape of this peptide. We find that such landscape has inverted features with respect to those typical of folded proteins. While the global free energy minimum consists of highly disordered structures, higher free energy regions correspond to a large variety of transiently structured conformations with secondary structure elements arranged in several different manners, and are not separated from each other by sizeable free energy barriers. From this peculiar structure of the free energy landscape we predict that this peptide should become more structured and not only more compact, with increasing temperatures, and we show that this is the case through a series of biophysical measurements.


Intrinsically Disordered Proteins/chemistry , Chromatography, Gel , Circular Dichroism , Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics
...