Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 219: 154-160, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29778189

RESUMEN

Canine distemper virus (CDV) is an RNA virus of the genus Morbillivirus within the family Paramyxoviridae. CDV produces multi-systemic disease in dogs and other terrestrial carnivores. With the development of modified live vaccines in the 1950s and 1960s, the disease, with a few exceptions, has been successfully controlled. However, recently the cases of CDV in vaccinated dogs have been increasing throughout the world, including the United States. There are many reasons that can lead to vaccine failure, including antigenic differences between the vaccine strains and the currently circulating wild-type strains. Currently, there are at least three genetically different CDV lineages circulating in the US. Therefore, in this study, we evaluated various wild-type CDV and vaccine isolates to determine if the genetic differences observed among various strains result in significant antigenic differences based on changes to the neutralizing epitopes. The results of a cross-neutralization assay revealed that there are antigenic differences among the tested CDV wild-type isolates as well as between the tested isolates and the vaccine strains currently used in the US. Therefore, these results suggest the need to develop an updated CDV vaccine.


Asunto(s)
Antígenos Virales/genética , Virus del Moquillo Canino/genética , Variación Genética , Animales , Antígenos Virales/clasificación , Protección Cruzada/inmunología , Moquillo/virología , Perros , Pruebas de Neutralización , Filogenia , Vacunas Atenuadas , Vacunas Virales/genética
2.
Mol Cancer Ther ; 17(1): 316-326, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29158470

RESUMEN

Clinical translation of intravenous therapies to treat disseminated or metastatic cancer is imperative. Comparative oncology, the evaluation of novel cancer therapies in animals with spontaneous cancer, can be utilized to inform and accelerate clinical translation. Preclinical murine studies demonstrate that single-shot systemic therapy with a vesicular stomatitis virus (VSV)-IFNß-NIS, a novel recombinant oncolytic VSV, can induce curative remission in tumor-bearing mice. Clinical translation of VSV-IFNß-NIS therapy is dependent on comprehensive assessment of clinical toxicities, virus shedding, pharmacokinetics, and efficacy in clinically relevant models. Dogs spontaneously develop cancer with comparable etiology, clinical progression, and response to therapy as human malignancies. A comparative oncology study was carried out to investigate feasibility and tolerability of intravenous oncolytic VSV-IFNß-NIS therapy in pet dogs with spontaneous cancer. Nine dogs with various malignancies were treated with a single intravenous dose of VSV-IFNß-NIS. Two dogs with high-grade peripheral T-cell lymphoma had rapid but transient remission of disseminated disease and transient hepatotoxicity that resolved spontaneously. There was no shedding of infectious virus. Correlative pharmacokinetic studies revealed elevated levels of VSV RNA in blood in dogs with measurable disease remission. This is the first evaluation of intravenous oncolytic virus therapy for spontaneous canine cancer, demonstrating that VSV-IFNß-NIS is well-tolerated and safe in dogs with advanced or metastatic disease. This approach has informed clinical translation, including dose and target indication selection, leading to a clinical investigation of intravenous VSV-IFNß-NIS therapy, and provided preliminary evidence of clinical efficacy and potential biomarkers that correlate with therapeutic response. Mol Cancer Ther; 17(1); 316-26. ©2017 AACR.


Asunto(s)
Enfermedades de los Perros/terapia , Enfermedades de los Perros/virología , Neoplasias/veterinaria , Viroterapia Oncolítica/métodos , Vesiculovirus/fisiología , Administración Intravenosa , Animales , Perros , Femenino , Neoplasias/terapia , Neoplasias/virología , Mascotas
3.
Am J Vet Res ; 77(1): 65-71, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26709938

RESUMEN

OBJECTIVE: To determine the pharmacokinetics of orally administered rapamycin in healthy dogs. ANIMALS: 5 healthy purpose-bred hounds. PROCEDURES: The study consisted of 2 experiments. In experiment 1, each dog received rapamycin (0.1 mg/kg, PO) once; blood samples were obtained immediately before and at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 hours after administration. In experiment 2, each dog received rapamycin (0.1 mg/kg, PO) once daily for 5 days; blood samples were obtained immediately before and at 3, 6, 24, 27, 30, 48, 51, 54, 72, 75, 78, 96, 96.5, 97, 98, 100, 102, 108, 120, 144, and 168 hours after the first dose. Blood rapamycin concentration was determined by a validated liquid chromatography-tandem mass spectrometry assay. Pharmacokinetic parameters were determined by compartmental and noncompartmental analyses. RESULTS: Mean ± SD blood rapamycin terminal half-life, area under the concentration-time curve from 0 to 48 hours after dosing, and maximum concentration were 38.7 ± 12.7 h, 140 ± 23.9 ng•h/mL, and 8.39 ± 1.73 ng/mL, respectively, for experiment 1, and 99.5 ± 89.5 h, 126 ± 27.1 ng•h/mL, and 5.49 ± 1.99 ng/mL, respectively, for experiment 2. Pharmacokinetic parameters for rapamycin after administration of 5 daily doses differed significantly from those after administration of 1 dose. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that oral administration of low-dose (0.1 mg/kg) rapamycin to healthy dogs achieved blood concentrations measured in nanograms per milliliter. The optimal dose and administration frequency of rapamcyin required to achieve therapeutic effects in tumor-bearing dogs, as well as toxicity after chronic dosing, need to be determined.


Asunto(s)
Perros/sangre , Sirolimus/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Cromatografía Liquida/métodos , Semivida
4.
Hum Gene Ther Clin Dev ; 24(4): 174-81, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24219832

RESUMEN

VSV-IFNß-NIS is a novel recombinant oncolytic vesicular stomatitis virus (VSV) with documented efficacy and safety in preclinical murine models of cancer. To facilitate clinical translation of this promising oncolytic therapy in patients with disseminated cancer, we are utilizing a comparative oncology approach to gather data describing the safety and efficacy of systemic VSV-IFNß-NIS administration in dogs with naturally occurring cancer. In support of this, we executed a dose-escalation study in purpose-bred dogs to determine the maximum tolerated dose (MTD) of systemic VSV-hIFNß-NIS, characterize the adverse event profile, and describe routes and duration of viral shedding in healthy, immune-competent dogs. The data indicate that an intravenous dose of 10(10) TCID50 is well tolerated in dogs. Expected adverse events were mild to moderate fever, self-limiting nausea and vomiting, lymphopenia, and oral mucosal lesions. Unexpected adverse events included prolongation of partial thromboplastin time, development of bacterial urinary tract infection, and scrotal dermatitis, and in one dog receiving 10(11) TCID50 (10 × the MTD), the development of severe hepatotoxicity and symptoms of shock leading to euthanasia. Viral shedding data indicate that detectable viral genome in blood diminishes rapidly with anti-VSV neutralizing antibodies detectable in blood as early as day 5 postintravenous virus administration. While low levels of viral genome copies were detectable in plasma, urine, and buccal swabs of dogs treated at the MTD, no infectious virus was detectable in plasma, urine, or buccal swabs at any of the doses tested. These studies confirm that VSV can be safely administered systemically in dogs, justifying the use of oncolytic VSV as a novel therapy for the treatment of canine cancer.


Asunto(s)
Vectores Genéticos/toxicidad , Viroterapia Oncolítica/efectos adversos , Virus Oncolíticos/genética , Vesiculovirus/genética , Animales , ADN Recombinante/administración & dosificación , ADN Recombinante/genética , ADN Recombinante/toxicidad , Perros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Inyecciones Intravenosas , Viroterapia Oncolítica/métodos , Virus Oncolíticos/metabolismo , Especificidad de Órganos , Vesiculovirus/metabolismo
5.
Vet Radiol Ultrasound ; 54(3): 299-306, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23464567

RESUMEN

Positron emission tomography/computed tomography (PET/CT) utilizing 3'-deoxy-3'-[(18) F]fluorothymidine ((18) FLT), a proliferation tracer, has been found to be a useful tool for characterizing neoplastic diseases and bone marrow function in humans. As PET and PET/CT imaging become increasingly available in veterinary medicine, knowledge of radiopharmaceutical biodistribution in veterinary species is needed for lesion interpretation in the clinical setting. The purpose of this study was to describe the normal biodistribution of (18) FLT in adult domestic cats. Imaging of six healthy young adult castrated male cats was performed using a commercially available PET/CT scanner consisting of a 64-slice helical CT scanner with an integrated whole-body, high-resolution lutetium oxy-orthosilicate (LSO) PET scanner. Cats were sedated and injected intravenously with 108.60 ± 2.09 (mean ± SD) MBq of (18) FLT (greater than 99% radiochemical purity by high-performance liquid chromatography). Imaging was performed in sternal recumbency under general anesthesia. Static images utilizing multiple bed positions were acquired 80.83 ± 7.52 (mean ± SD) minutes post-injection. Regions of interest were manually drawn over major parenchymal organs and selected areas of bone marrow and increased tracer uptake. Standardized uptake values were calculated. Notable areas of uptake included hematopoietic bone marrow, intestinal tract, and the urinary and hepatobiliary systems. No appreciable uptake was observed within brain, lung, myocardium, spleen, or skeletal muscle. Findings from this study can be used as baseline data for future studies of diseases in cats.


Asunto(s)
Gatos/metabolismo , Didesoxinucleósidos/farmacocinética , Radiofármacos/farmacocinética , Animales , Lutecio/metabolismo , Masculino , Tomografía de Emisión de Positrones/veterinaria , Silicatos/metabolismo , Distribución Tisular , Tomografía Computarizada por Rayos X/veterinaria
6.
Vet Radiol Ultrasound ; 53(3): 348-57, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22360684

RESUMEN

Palladia(TM) (toceranib phosphate-Pfizer Animal Health) is a novel orally administered receptor tyrosine kinase inhibitor (TKI) approved for treatment of canine mast cell tumors. Receptor tyrosine kinase dysregulation leads to tumor growth, progression, and metastasis. Toceranib's targets include vascular endothelial growth factor receptor (VEGFR-2/Flk-1/KDR), platelet-derived growth factor receptor, and kit. Positron Emission Tomography/Computed Tomography (PET/CT) is used commonly to diagnose, prognosticate, and monitor response to antineoplastic therapy in human patients. In this study, serial PET/CT imaging with (18) F-fluorodeoxyglucose ((18) FDG) was used to assess response to toceranib therapy in dogs with measurable solid malignancies. Six tumor-bearing dogs underwent tumor assessment using both standard RECIST criteria and PET/CT prior to and at a median of 5 weeks postinitiation of toceranib treatment. Toceranib was prescribed initially at a target dose 3.25 mg/kg PO q48 h, with subsequent modifications based on observed toxicity. Treatment was continued in patients achieving stable disease with acceptable drug tolerance. One dog was maintained on drug despite dose modification due to toxicity; measurable clinical and image-based responses were seen after 10 weeks of therapy. All others had stable or progressive disease based on clinical restaging and PET/CT at first recheck. . Due to discordance with anatomic and metabolic imaging, further studies are needed to investigate the role of molecular imaging in assessment of drug response and identify other potential molecular targets of toceranib.


Asunto(s)
Antineoplásicos/uso terapéutico , Enfermedades de los Perros/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Indoles/uso terapéutico , Imagen Multimodal/veterinaria , Neoplasias/veterinaria , Tomografía de Emisión de Positrones , Pirroles/uso terapéutico , Radiofármacos , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tomografía Computarizada por Rayos X , Animales , Enfermedades de los Perros/tratamiento farmacológico , Perros , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA