Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(38): e2202490119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095199

RESUMEN

Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane. An obvious question is how such destabilizing activity might be regulated to avoid membrane and cellular damage, and how the two juxtaposed helices cooperate in fusion. Using cellular fusion assays and in vitro liposome assays, we report that the two helices possess unique characteristics, both of which are needed for full activity of the protein. We demonstrate that externalized phosphatidylserine (PS), a lipid previously implicated in myoblast fusion, has a determinant role in the regulation of Myomerger activity. The membrane-proximal, amphipathic Helix-1 is normally disordered and its α-helical structure is induced by PS, making membrane interactions more efficacious. The distal, more hydrophobic Helix-2 is intrinsically ordered, possesses an ability to insert into membranes, and augments the membrane-stressing effects of Helix-1. These data reveal that Myomerger fusogenic activity is an exquisitely orchestrated event involving its two ectodomain helices, which are controlled by membrane lipid composition, providing an explanation as to how its membrane-stressing activity is spatially and temporally regulated during the final step of myoblast fusion.


Asunto(s)
Fusión Celular , Proteínas de la Membrana , Mioblastos , Fosfatidilserinas , Animales , Línea Celular , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mioblastos/fisiología
2.
Biochemistry ; 61(13): 1273-1285, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35730892

RESUMEN

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a eukaryotic, post-translational modification catalyzed by GPI transamidase (GPI-T). The Saccharomyces cerevisiae GPI-T is composed of five membrane-bound subunits: Gpi8, Gaa1, Gpi16, Gpi17, and Gab1. GPI-T has been recalcitrant to in vitro structure and function studies because of its complexity and membrane-solubility. Furthermore, a reliable, quantitative, in vitro assay for this important post-translational modification has remained elusive despite its discovery more than three decades ago.Three recent reports describe the structure of GPI-T from S. cerevisiae and humans, shedding critical light on this important enzyme and offering insight into the functions of its different subunits. Here, we present the purification and characterization of a truncated soluble GPI-T heterotrimer complex (Gpi823-306, Gaa150-343, and Gpi1620-551) without transmembrane domains. Using this simplified heterotrimer, we report the first quantitative method to measure GPI-T activity in vitro and demonstrate that this soluble, minimalistic GPI-T retains transamidase activity. These results contribute to our understanding of how this enzyme is organized and functions, and provide a method to screen potential GPI-T inhibitors.


Asunto(s)
Aciltransferasas , Proteínas de Saccharomyces cerevisiae , Aciltransferasas/química , Aciltransferasas/metabolismo , Glicosilfosfatidilinositoles , Humanos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nat Commun ; 12(1): 750, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531466

RESUMEN

Muscle cell fusion is a multistep process involving cell migration, adhesion, membrane remodeling and actin-nucleation pathways to generate multinucleated myotubes. However, molecular brakes restraining cell-cell fusion events have remained elusive. Here we show that transforming growth factor beta (TGFß) pathway is active in adult muscle cells throughout fusion. We find TGFß signaling reduces cell fusion, regardless of the cells' ability to move and establish cell-cell contacts. In contrast, inhibition of TGFß signaling enhances cell fusion and promotes branching between myotubes in mouse and human. Exogenous addition of TGFß protein in vivo during muscle regeneration results in a loss of muscle function while inhibition of TGFßR2 induces the formation of giant myofibers. Transcriptome analyses and functional assays reveal that TGFß controls the expression of actin-related genes to reduce cell spreading. TGFß signaling is therefore requisite to limit mammalian myoblast fusion, determining myonuclei numbers and myofiber size.


Asunto(s)
Músculo Esquelético/citología , Factor de Crecimiento Transformador beta/metabolismo , Adolescente , Adulto , Animales , Western Blotting , Fusión Celular , Células Cultivadas , Biología Computacional , Fibroblastos/citología , Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Regeneración/genética , Regeneración/fisiología , Células Madre/citología , Células Madre/metabolismo , Factor de Crecimiento Transformador beta/genética , Adulto Joven
4.
Nat Commun ; 12(1): 495, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33479215

RESUMEN

Myomerger is a muscle-specific membrane protein involved in formation of multinucleated muscle cells by mediating the transition from the early hemifusion stage to complete fusion. Here, we considered the physical mechanism of the Myomerger action based on the hypothesis that Myomerger shifts the spontaneous curvature of the outer membrane leaflets to more positive values. We predicted, theoretically, that Myomerger generates the outer leaflet elastic stresses, which propagate into the hemifusion diaphragm and accelerate the fusion pore formation. We showed that Myomerger ectodomain indeed generates positive spontaneous curvature of lipid monolayers. We substantiated the mechanism by experiments on myoblast fusion and influenza hemagglutinin-mediated cell fusion. In both processes, the effects of Myomerger ectodomain were strikingly similar to those of lysophosphatidylcholine known to generate a positive spontaneous curvature of lipid monolayers. The control of post-hemifusion stages by shifting the spontaneous curvature of proximal membrane monolayers may be utilized in diverse fusion processes.


Asunto(s)
Membrana Celular/metabolismo , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Mioblastos/metabolismo , Algoritmos , Animales , Fusión Celular , Línea Celular , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Modelos Teóricos , Mioblastos/citología , Células 3T3 NIH
5.
Protein Pept Lett ; 26(5): 339-347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30816075

RESUMEN

BACKGROUND: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. OBJECTIVE: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. METHODS: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-ß-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. RESULTS: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. CONCLUSION: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


Asunto(s)
Proteínas Bacterianas/química , Caseínas/química , Metaloproteínas/química , beta-Lactamasas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Caulobacter crescentus/química , Dipéptidos/química , Metaloproteínas/genética , Mutación , Estabilidad Proteica
6.
Dev Cell ; 46(6): 767-780.e7, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30197239

RESUMEN

Classic mechanisms for membrane fusion involve transmembrane proteins that assemble into complexes and dynamically alter their conformation to bend membranes, leading to mixing of membrane lipids (hemifusion) and fusion pore formation. Myomaker and Myomerger govern myoblast fusion and muscle formation but are structurally divergent from traditional fusogenic proteins. Here, we show that Myomaker and Myomerger independently mediate distinct steps in the fusion pathway, where Myomaker is involved in membrane hemifusion and Myomerger is necessary for fusion pore formation. Mechanistically, we demonstrate that Myomerger is required on the cell surface where its ectodomains stress membranes. Moreover, we show that Myomerger drives fusion completion in a heterologous system independent of Myomaker and that a Myomaker-Myomerger physical interaction is not required for function. Collectively, our data identify a stepwise cell fusion mechanism in myoblasts where different proteins are delegated to perform unique membrane functions essential for membrane coalescence.


Asunto(s)
Diferenciación Celular , Fusión de Membrana , Proteínas de la Membrana/fisiología , Morfogénesis , Proteínas Musculares/fisiología , Mioblastos/fisiología , Animales , Comunicación Celular , Fusión Celular , Ratones , Ratones Noqueados , Desarrollo de Músculos , Mioblastos/citología
7.
J Biol Chem ; 292(42): 17272-17289, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28860190

RESUMEN

Multinucleated skeletal muscle fibers form through the fusion of myoblasts during development and regeneration. Previous studies identified myomaker (Tmem8c) as a muscle-specific membrane protein essential for fusion. However, the specific function of myomaker and how its function is regulated are unknown. To explore these questions, we first examined the cellular localization of endogenous myomaker. Two independent antibodies showed that whereas myomaker does localize to the plasma membrane in cultured myoblasts, the protein also resides in the Golgi and post-Golgi vesicles. These results raised questions regarding the precise cellular location of myomaker function and mechanisms that govern myomaker trafficking between these cellular compartments. Using a synchronized fusion assay, we demonstrated that myomaker functions at the plasma membrane to drive fusion. Trafficking of myomaker is regulated by palmitoylation of C-terminal cysteine residues that allows Golgi localization. Moreover, dissection of the C terminus revealed that palmitoylation was not sufficient for complete fusogenic activity suggesting a function for other amino acids within this C-terminal region. Indeed, C-terminal mutagenesis analysis highlighted the importance of a C-terminal leucine for function. These data reveal that myoblast fusion requires myomaker activity at the plasma membrane and is potentially regulated by proper myomaker trafficking.


Asunto(s)
Antígenos de Diferenciación/metabolismo , Aparato de Golgi/metabolismo , Lipoilación/fisiología , Fusión de Membrana/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Animales , Antígenos de Diferenciación/genética , Línea Celular , Aparato de Golgi/genética , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Mioblastos Esqueléticos/citología , Dominios Proteicos , Transporte de Proteínas/fisiología
8.
Arch Biochem Biophys ; 633: 58-67, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28893510

RESUMEN

Glycosylphosphatidylinositol transamidase (GPI-T) catalyzes the post-translational addition of the GPI anchor to the C-terminus of some proteins. In most eukaryotes, Gpi8, the active site subunit of GPI-T, is part of a hetero-pentameric complex containing Gpi16, Gaa1, Gpi17, and Gab1. Gpi8, Gaa1, and Gpi16 co-purify as a heterotrimer from Saccharomyces cerevisiae, suggesting that they form the core of the GPI-T. Details about the assembly and organization of these subunits have been slow to emerge. We have previously shown that the soluble domain of S. cerevisiae Gpi8 (Gpi823-306) assembles as a homodimer, similar to the caspases with which it shares weak sequence homology (Meitzler, J. L. et al., 2007). Here we present the characterization of a complex between the soluble domains of Gpi8 and Gaa1. The complex between GST-Gpi823-306 (α) and His6-Gaa150-343 (ß) was characterized by native gel analysis and size exclusion chromatography (SEC) and results are most consistent with an α2ß2 stoichiometry. These results demonstrate that Gpi8 and Gaa1 interact specifically without a requirement for other subunits, bring us closer to determining the stoichiometry of the core subunits of GPI-T, and lend further credence to the hypothesis that these three subunits assemble into a dimer of a trimer.


Asunto(s)
Aminoaciltransferasas/química , Glicoproteínas de Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencias de Aminoácidos , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Solubilidad , Homología Estructural de Proteína , Especificidad por Sustrato , Vibrionaceae/química , Vibrionaceae/enzimología
9.
Nat Commun ; 8: 15665, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28569755

RESUMEN

Despite the importance of cell fusion for mammalian development and physiology, the factors critical for this process remain to be fully defined, which has severely limited our ability to reconstitute cell fusion. Myomaker (Tmem8c) is a muscle-specific protein required for myoblast fusion. Expression of myomaker in fibroblasts drives their fusion with myoblasts, but not with other myomaker-expressing fibroblasts, highlighting the requirement of additional myoblast-derived factors for fusion. Here we show that Gm7325, which we name myomerger, induces the fusion of myomaker-expressing fibroblasts. Thus, myomaker and myomerger together confer fusogenic activity to otherwise non-fusogenic cells. Myomerger is skeletal muscle-specific and genetic deletion in mice results in a paucity of muscle fibres demonstrating its requirement for normal muscle formation. Myomerger deficient myocytes differentiate and harbour organized sarcomeres but are fusion-incompetent. Our findings identify myomerger as a fundamental myoblast fusion protein and establish a system that begins to reconstitute mammalian cell fusion.


Asunto(s)
Fusión Celular , Proteínas de la Membrana/fisiología , Desarrollo de Músculos , Fibras Musculares Esqueléticas/fisiología , Proteínas Musculares/fisiología , Animales , Sistemas CRISPR-Cas , Comunicación Celular , Diferenciación Celular , Biología Computacional , Femenino , Fibroblastos/citología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mioblastos/citología , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos
10.
Proc Natl Acad Sci U S A ; 113(8): 2116-21, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858401

RESUMEN

During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.


Asunto(s)
Membrana Celular , Proteínas de la Membrana , Desarrollo de Músculos/fisiología , Proteínas Musculares , Mioblastos Esqueléticos , Animales , Fusión Celular , Línea Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/química , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
11.
Crit Rev Biochem Mol Biol ; 48(5): 446-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23978072

RESUMEN

Cancer is second only to heart disease as a cause of death in the US, with a further negative economic impact on society. Over the past decade, details have emerged which suggest that different glycosylphosphatidylinositol (GPI)-anchored proteins are fundamentally involved in a range of cancers. This post-translational glycolipid modification is introduced into proteins via the action of the enzyme GPI transamidase (GPI-T). In 2004, PIG-U, one of the subunits of GPI-T, was identified as an oncogene in bladder cancer, offering a direct connection between GPI-T and cancer. GPI-T is a membrane-bound, multi-subunit enzyme that is poorly understood, due to its structural complexity and membrane solubility. This review is divided into three sections. First, we describe our current understanding of GPI-T, including what is known about each subunit and their roles in the GPI-T reaction. Next, we review the literature connecting GPI-T to different cancers with an emphasis on the variations in GPI-T subunit over-expression. Finally, we discuss some of the GPI-anchored proteins known to be involved in cancer onset and progression and that serve as potential biomarkers for disease-selective therapies. Given that functions for only one of GPI-T's subunits have been robustly assigned, the separation between healthy and malignant GPI-T activity is poorly defined.


Asunto(s)
Aminoaciltransferasas/metabolismo , Biomarcadores de Tumor/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Oncogenes/genética , Secuencia de Aminoácidos , Aminoaciltransferasas/química , Humanos , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA