Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Biomolecules ; 13(2)2023 01 28.
Article En | MEDLINE | ID: mdl-36830617

The increasing emergence of Mycobacterium tuberculosis (Mtb) strains resistant to traditional anti-tuberculosis drugs has alarmed health services worldwide. The search for new therapeutic targets and effective drugs that counteract the virulence and multiplication of Mtb represents a challenge for the scientific community. Several studies have considered the erp gene a possible therapeutic target in the last two decades, since its disruption negatively impacts Mtb multiplication. This gene encodes the exported repetitive protein (Erp), which is located in the cell wall of Mtb. In vitro studies have shown that the Erp protein interacts with two putative membrane proteins, Rv1417 and Rv2617c, and the impairment of their interactions can decrease Mtb replication. In this study, we present five nicotine analogs that can inhibit the formation of heterodimers and trimers between these proteins. Through DFT calculations, molecular dynamics, docking, and other advanced in silico techniques, we have analyzed the molecular complexes, and show the effect these compounds have on protein interactions. The results show that four of these analogs can be possible candidates to counteract the pathogenicity of Mtb. This study aims to combine research on the Erp protein as a therapeutic target in the search for new drugs that serve to create new therapies against tuberculosis disease.


Mycobacterium tuberculosis , Membrane Proteins/metabolism , Nicotine/pharmacology , Virulence Factors/metabolism , Virulence , Bacterial Proteins/metabolism
2.
Biomolecules ; 12(4)2022 03 25.
Article En | MEDLINE | ID: mdl-35454088

Apolipoprotein E4 (ApoE4) is thought to increase the risk of developing Alzheimer's disease. Several studies have shown that ApoE4-Amyloid ß (Aß) interactions can increment amyloid depositions in the brain and that this can be augmented at low pH values. On the other hand, experimental studies in transgenic mouse models have shown that treatment with enoxaparin significantly reduces cortical Aß levels, as well as decreases the number of activated astrocytes around Aß plaques. However, the interactions between enoxaparin and the ApoE4-Aß proteins have been poorly explored. In this work, we combine molecular dynamics simulations, molecular docking, and binding free energy calculations to elucidate the molecular properties of the ApoE4-Aß interactions and the competitive binding affinity of the enoxaparin on the ApoE4 binding sites. In addition, we investigated the effect of the environmental pH levels on those interactions. Our results showed that under different pH conditions, the closed form of the ApoE4 protein, in which the C-terminal domain folds into the protein, remains stabilized by a network of hydrogen bonds. This closed conformation allowed the generation of six different ApoE4-Aß interaction sites, which were energetically favorable. Systems at pH5 and 6 showed the highest energetic affinity. The enoxaparin molecule was found to have a strong energetic affinity for ApoE4-interacting sites and thus can neutralize or disrupt ApoE4-Aß complex formation.


Alzheimer Disease , Apolipoprotein E4 , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Apolipoprotein E3/metabolism , Apolipoprotein E4/metabolism , Enoxaparin/pharmacology , Hydrogen-Ion Concentration , Mice , Molecular Docking Simulation , Plaque, Amyloid/metabolism
3.
Polymers (Basel) ; 13(11)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199390

ND1 subunit possesses the majority of the inhibitor binding domain of the human mitochondrial respiratory complex I. This is an attractive target for the search for new inhibitors that seek mitochondrial dysfunction. It is known, from in vitro experiments, that some metabolites from Annona muricata called acetogenins have important biological activities, such as anticancer, antiparasitic, and insecticide. Previous studies propose an inhibitory activity of bovine mitochondrial respiratory complex I by bis-tetrahydrofurans acetogenins such as annocatacin B, however, there are few studies on its inhibitory effect on human mitochondrial respiratory complex I. In this work, we evaluate the in silico molecular and energetic affinity of the annocatacin B molecule with the human ND1 subunit in order to elucidate its potential capacity to be a good inhibitor of this subunit. For this purpose, quantum mechanical optimizations, molecular dynamics simulations and the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) analysis were performed. As a control to compare our outcomes, the molecule rotenone, which is a known mitochondrial respiratory complex I inhibitor, was chosen. Our results show that annocatacin B has a greater affinity for the ND1 structure, its size and folding were probably the main characteristics that contributed to stabilize the molecular complex. Furthermore, the MM/PBSA calculations showed a 35% stronger binding free energy compared to the rotenone complex. Detailed analysis of the binding free energy shows that the aliphatic chains of annocatacin B play a key role in molecular coupling by distributing favorable interactions throughout the major part of the ND1 structure. These results are consistent with experimental studies that mention that acetogenins may be good inhibitors of the mitochondrial respiratory complex I.

4.
J Mol Model ; 25(7): 200, 2019 Jun 25.
Article En | MEDLINE | ID: mdl-31240483

A theoretical approach was used to evaluate the antioxidant capacity of 20 flavonoids reported in Annona muricata leaves. The theoretical study was at the GGA level using the wB97XD functional and the cc-pvtz basis set. The calculations were performed in gas phase and implicit solvent phase. The flavonol robinetin (03c) and the flavanol gallocatechin (01c) are species that exhibited the best antioxidant capacity in the HAT, SEPT, and SPLET mechanisms. On the other hand, in the SET I mechanism, flavonol quercetin (03b) was the best, and in the SET II mechanism, the most favored species is the flavanol catechin (01a). However, these species do not achieve to overcome the antioxidant capacity presented by the Trolox.


Annona/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Models, Theoretical , Plant Leaves/chemistry , Free Radicals/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology
...