Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(15): 3987-3995, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38573308

RESUMEN

The nanocrystal-ligand boundaries of colloidal quantum dots (QDs) mediate charge and energy transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We used time-resolved infrared spectroscopy combined with transient electronic spectroscopy to probe vibrational modes of the carboxylate anchoring groups of stearate ligands attached to cadmium selenide (CdSe) QDs that were optically excited in solid nanocrystal films. The vibrational frequencies of surface-bonded carboxylate groups revealed their interactions with surface-localized holes in the excited states of the QDs. We also observed transient and reversible photoinduced ligand detachment from CdSe nanocrystals within their excited state lifetime. By probing both surface charge distributions and ligand dynamics on QDs in their excited states, we open a pathway to explore how the nanocrystal-ligand boundary can be understood and controlled for the design of QD architectures that most effectively drive charge transfer processes in solar energy harvesting and photoredox catalysis applications.

2.
Adv Mater ; 36(11): e2311458, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38059415

RESUMEN

The reversal of halide ions is studied under various conditions. However, the underlying mechanism of heat-induced reversal remains unclear. This work finds that dynamic disorder-induced localization of self-trapped polarons and thermal disorder-induced strain (TDIS) can be co-acting drivers of reverse segregation. Localization of polarons results in an order of magnitude decrease in excess carrier density (polaron population), causing a reduced impact of the light-induced strain (LIS - responsible for segregation) on the perovskite framework. Meanwhile, exposing the lattice to TDIS exceeding the LIS can eliminate the photoexcitation-induced strain gradient, as thermal fluctuations of the lattice can mask the LIS strain. Under continuous 0.1 W cm⁻2 illumination (upon segregation), the strain disorder is estimated to be 0.14%, while at 80 °C under dark conditions, the strain is 0.23%. However, in situ heating of the segregated film to 80 °C under continuous illumination (upon reversal) increases the total strain disorder to 0.25%, where TDIS is likely to have a dominant contribution. Therefore, the contribution of entropy to the system's free energy is likely to dominate, respectively. Various temperature-dependent in situ measurements and simulations further support the results. These findings highlight the importance of strain homogenization for designing stable perovskites under real-world operating conditions.

3.
J Phys Chem Lett ; 11(8): 3166-3172, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32243757

RESUMEN

The role of dipolar motion of organic cations in the A-sites of halide perovskites has been debated in an effort to understand why these materials possess such remarkable properties. Here, we show that the dipolar motion of cations such as methylammonium (MA) or formamidinium (FA) versus cesium (Cs) does not influence large polaron binding energies, delocalization lengths, formation times, or bimolecular recombination lifetimes in lead bromide perovskites containing only one type of A-site cation. We directly probe the transient absorption spectra of large polarons throughout the entire mid-infrared and resolve their dynamics on time scales from sub-100 fs to sub-µs using time-resolved mid-infrared spectroscopy. Our findings suggest that the improved optoelectronic properties reported of halide perovskites with mixed A-site cations may result from synergy among the cations and how their mixture modulates the structure and dynamics of the inorganic lattice rather than from the dipolar properties of the cations themselves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...