Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1308: 342614, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740455

RESUMEN

Metal-organic frameworks (MOFs) have been used to detect uric acid (UA), but still very challenging to achieve a low detection limit due to the low inferior conductivity of MOFs. Herein, three different N-doped ZIF-67-derived carbons were synthesized for the first time by one-step co-pyrolysis of 2-methylimidazole with cobalt nitrate (CN), cobalt acetate (CA) or cobalt chloride (CC) toward UA sensing. Afterwards, the cobalt nitrate-derived Co particle (Co/CN) supported by N-doped ZIF-67-derived carbon displays extremely low detection limit and high sensitivity for UA, outperformed all reported MOFs-based UA sensors. More interestingly, it was discovered that the high valence Co4+ within the Co/CN sample produced in high-acidic environment can intercalate in the frame for a bridge adsorption between two reaction sites, which boosted simultaneous 2-electron transfer, while Co3+ only allows an end-adsorption structure for one-electron transfer being the rate determining step. Furthermore, the bridge adsorption mode of UA on Co4+ -based catalyst was also verified by theoretical DFT calculations and XPS experiment. This work holds great promise for a selective and sensitive UA sensor for practical bioscience and clinic diagnostic applications while shedding lights in fundamental research for innovative designs and developments of high-sensitive electrochemical sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...