Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202401442, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052252

RESUMEN

Commercial lithium-ion batteries are gradually approaching their theoretical values (200-250 Wh kg-1), which cannot meet the fast-growing energy storage demands. Lithium-sulfur (Li-S) batteries are anticipated to supersede lithium-ion batteries as the next-generation energy storage system owing to their high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1). Nonetheless, Li-S batteries encounter several challenges, including the inadequate conductivity of sulfur and lithium sulfide, sulfur's volume expansion, and the shuttle effect of lithium polysulfides, all of which significantly impact the practical utilization of Li-S batteries. Electrospun carbon-based nanofibers can simultaneously resolve these issues with their economical preparation, distinctive nanostructure, and exceptional flexibility. This review presents the most recent research findings on electrospun carbon-based nanofibers materials serving as sulfur hosts and interlayer components in Li-S batteries. We analyzed the impact of the material's structural design on the performance of Li-S batteries and the relative underlying mechanism. Finally, the current challenges and issues faced by carbon-based nanofibers composites in the application of Li-S batteries are summarized, and the future development trajectory are outlined.

2.
ACS Nano ; 18(22): 14742-14753, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38770934

RESUMEN

Transition metal single-atom catalysts (SACs) have been regarded as possible alternatives to platinum-based materials due to their satisfactory performance of the oxygen reduction reaction (ORR). By contrast, main-group metal elements are rarely studied due to their unfavorable surface and electronic states. Herein, a main-group Sn-based SAC with penta-coordinated and asymmetric first-shell ligands is reported as an efficient and robust ORR catalyst. The introduction of the vertical oxygen atom breaks the symmetric charge balance, modulating the binding strength to oxygen intermediates and decreasing the energy barrier for the ORR process. As expected, the prepared Sn SAC exhibits outstanding ORR activity with a high half-wave potential of 0.912 V (vs RHE) and an excellent mass activity of 13.1 A mgSn-1 at 0.850 V (vs RHE), which surpasses that of commercial Pt/C and most reported transition-metal-based SACs. Additionally, the reported Sn SAC shows excellent ORR stability due to the strong interaction between Sn sites and the carbon support with oxygen atom as the bridge. The excellent ORR performance of Sn SAC was also proven by both liquid- and solid-state zinc-air battery (ZAB) measurements, indicating its great potential in practical applications.

3.
J Colloid Interface Sci ; 625: 946-955, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35777101

RESUMEN

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage. However, the notorious lithium polysulfides (LiPSs) shuttle effect and torpid redox kinetics hinder their practical application. Enhancing phase conversion efficiency and limiting the dissolution of LiPSs are critical for stabilizing Li-S batteries. Herein, sulfiphilic defective TiO2 nanoparticles (D-TiO2) were integrated into the lithiophilic N-doped porous carbon nanofiber membrane (D-TiO2@NPCNF) to construct interlayer for catalyzing the conversion of LiPSs. The D-TiO2@NPCNF provides hierarchical porous structure and large specific surface area, and the formed 3D conductive network accelerates the transport of electrons and ions. The dual-active sites (N and D-TiO2) enhance the interface conversion and chemisorption ability of LiPSs via forming "Li-N and Ti-S" bonds. Due to the structural advantage of the D-TiO2@NPCNF, the Li-S batteries exhibit excellent cycling stability (only 0.049% decay per cycle in 800cycles at 1.0C) and impressive specific capacity (608 mAh g-1 at 3.0C). This work is expected to deepen the comprehension of complex interphase conversion processes of LiPSs and provide novel ideas for the design of new interlayer materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA