Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 3126-3129, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824344

RESUMEN

Graphene is a kind of two-dimensional material with a single-layer carbon structure and has been investigated in many high-performance photodetectors. The lateral photovoltaic effect (LPE) is widely used in the position-sensitive detectors (PSDs) owing to its linear response of photovoltage to the light position. In this Letter, a type of graphene-enhanced LPE is observed in the Ag nanoparticle-covered graphene/n-type Si. The LPE sensitivity can reach 97.3 mV/mm, much higher than the sensitivity of 1.3 mV/mm in the control sample of Ag/Si and 5.2 mV/mm of graphene/Si. Based on the photocarriers' diffusion mechanism, tailoring a photocarrier transfer at the interface of a heterojunction plays a key role for the enhancement. These findings exhibit great application potential of graphene in the field of PSDs and offer an effective method for the optimization of LPE devices.

2.
Appl Opt ; 63(12): 3242-3249, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856473

RESUMEN

Traditional long-wave infrared polarimetry usually relies on complex optical setups, making it challenging to meet the increasing demand for system miniaturization. To address this problem, we design an all-silicon broadband achromatic polarization-multiplexing metalens (BAPM) operating at the wavelength range of 9-12 µm. A machine-learning-based design method is developed to replace the tedious and computationally intensive simulation of a large number of meta-atoms. The results indicate that the coefficients of variation in focal length of the BAPM are 3.95% and 3.71%, and the average focusing efficiencies are 41.3% and 40.5% under broadband light incidence with x- and y-polarizations, respectively.

3.
Nano Lett ; 23(17): 8288-8294, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37610068

RESUMEN

Controlling resistance by external fields provides fascinating opportunities for the development of novel devices and circuits, such as temperature-field-induced superconductors, magnetic-field-triggered giant magnetoresistance devices, and electric-field-operated flash memories. In this work, we demonstrate a light-triggered nonvolatile resistive switching behavior in oxygen-doped MoS2. The two-terminal devices exhibit stable light-modulated resistive switching characteristics and optically tunable synaptic properties with an on/off ratio of up to 104. The integrated device with crossbar architecture enables simultaneous image sensing, preprocessing, and storage in a single device, thereby increasing the training efficiency and recognition rate of image recognition tasks. This work presents a novel pathway to develop the next generation of light-controlled memory and artificial vision systems for neuromorphic computing.

4.
Opt Express ; 27(2): 743-752, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30696155

RESUMEN

A laser tuned tunneling detection is observed in SiO2(50nm)/p-Si/SiO2 structure. In comparison of dark condition, the tunneling current get amplified considerably over 250 times when irradiated with a low intensity laser (5mW) directly on the oxide layers. This huge amplified tunneling is unusual and rarely seen. Interestingly, this amplified tunneling effect is of position-dependent, and has a wide adjustment scope (centimeter level). Different from the traditional tunneling effect, where tremendous research efforts were directed only towards the influence of applied voltage or magnetic field, we demonstrate that this laser tuned amplifying process strongly associates with the interface states existing at SiO2/p-Si interface. These interface states can largely collect the light-induced careers and regulate its diffusion in a controllable manner. This work, for the first time, unambiguously demonstrate a novel tunneling detection based on the interface states, suggesting a new approach for light and position sensitive tunneling devices.

5.
Nanotechnology ; 30(17): 175201, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30654338

RESUMEN

A switchable lateral resistance effect with high reverse voltage has been observed in nanoscale copper groove structure. With the stimulation of electric pulse and local illumination of laser, the lateral resistance of the structure can be modulated in a non-volatile manner. We attribute this phenomenon to the different width of depletion region and the Schottky barrier change caused by the nanoscale charge trapping effect. This work may inspire a new approach of resistance modulation and help the development of laser-assisted electric pulse merged devices.

6.
Nanotechnology ; 29(20): 205203, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29504516

RESUMEN

Silicon nanopyramids with the excellent ability of light absorption have been mostly reported in solar cells. Here, we report an obviously enhanced lateral photovoltaic effect (LPE) in copper-nanoparticle-covered random Si nanopyramids (Cu@Si-pyramid). Remarkable photoelectric responses are achieved in broadband from 405 to 780 nm. Furthermore, a prominent LPE is double-enhanced from 74.0 to 157.9 mV mm-1 when the linear region decreases from 3 to 1 mm. Finite-difference time-domain simulation is applied to investigate the origin of the exceptional results. This work declares a position-sensitive property of Si-nanopyramid systems and proposes promising applications to photodetections based on LPE.

7.
Small ; 13(41)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28941064

RESUMEN

Surface plasmon-based approaches are widely applied to improve the efficiency of photoelectric devices such as photosensors and photocells. In order to promote the light absorption and electron-hole pair generation in devices, metallodielectric nanostructures are used to boost the growth of surface plasmons. Here, silicon nanowires (SiNWs) are used to modify a metal-semiconductor structure; thus, Ag/SiNWs/Si is manufactured. In this system, a large increased lateral photovoltaic effect (LPE) is detected with a maximum positional sensitivity of 65.35 mV mm-1 , which is ≈53-fold and 1000-fold compared to the conventional Ag/Si (1.24 mV mm-1 ) and SiNWs/Si (0.06 mV mm-1 ), respectively. It is demonstrated that localized surface plasmons (LSPs) contribute a lot to the increment of LPE. Furthermore, through the surface-enhanced Raman scattering spectra of rhodamine-6G and finite-difference time-domain simulation, it is illustrated that silver-coated SiNWs support strong LSPs. The results propose an enhancement mechanism based on LSPs to facilitate the photoelectric conversion in LPE and offer an effective way to improve the sensitivity of photodetectors.

8.
Sci Rep ; 7: 46377, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28397819

RESUMEN

In this article, we report a magnetic tuning lateral photovoltaic effect (LPE) in a nonmagnetic Si-based Schottky junctions. In the magnetic field intensity range of 0 to 1.6 T, the variation amplitude of LPE sensitivity is as high as 94.8%, the change of LPV is and the change rate of lateral photo-voltage even reaches 520 mV/T at 1.5 T, which is apparently higher than the results of previous reported researches in magnetic materials. This effect is attributed to the combined result of the influence of magnetic field on diffusion current and the rectification property of our anisotropic structure. This work may expand the application of LPE in magnetism field such as magnetic sensor and magnetoresistance, and it suggests a new way to investigate the carrier transport in Schottky junctions under magnetic field.

9.
Sci Rep ; 6: 32015, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535351

RESUMEN

Owing to the innate stabilization of built-in potential in p-n junction or metal-oxide-semiconductor structure, the sensitivity and linearity of most lateral photovoltaic effect (LPE) devices is always fixed after fabrication. Here we report a nonvolatile and tunable switching effect of lateral photo-voltage (LPV) in Cu dusted ultrathin metal-oxide-semiconductor structure. With the stimulation of electric pulse and local illumination, the sensitivity and linearity of LPV can be adjusted up and down in a nonvolatile manner. This phenomenon is attributed to a controllable change of the Schottky barrier formed between the metal layer and silicon substrate, including the consequent change of film resistivity. This work may widely improve the performance of existing LPE-based devices and suggest new applications for LPE in other areas.

10.
Sci Rep ; 6: 22906, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26965713

RESUMEN

We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...