Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microsc Microanal ; 19(1): 111-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23380005

RESUMEN

Stereological analysis has been coupled with transmission electron microscope (TEM) orientation mapping to investigate the grain boundary character distribution in nanocrystalline copper thin films. The use of the nanosized (<5 nm) beam in the TEM for collecting spot diffraction patterns renders an order of magnitude improvement in spatial resolution compared to the analysis of electron backscatter diffraction patterns in the scanning electron microscope. Electron beam precession is used to reduce dynamical effects and increase the reliability of orientation solutions. The misorientation distribution function shows a strong misorientation texture with a peak at 60°/[111], corresponding to the Σ3 misorientation. The grain boundary plane distribution shows {111} as the most frequently occurring plane, indicating a significant population of coherent twin boundaries. This study demonstrates the use of nanoscale orientation mapping in the TEM to quantify the five-parameter grain boundary distribution in nanocrystalline materials.

2.
Nanotechnology ; 23(13): 135702, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22418052

RESUMEN

In this work, a recently developed electron diffraction technique called diffraction scanning transmission electron microscopy (D-STEM) is coupled with precession electron microscopy to obtain quantitative local texture information in damascene copper interconnects (1.8 µm-70 nm in width) with a spatial resolution of less than 5 nm. Misorientation and trace analysis is performed to investigate the grain boundary distribution in these lines. The results reveal strong variations in texture and grain boundary distribution of the copper lines upon downscaling. Lines of width 1.8 µm exhibit a strong <111> normal texture and comprise large micron-size grains. Upon downscaling to 180 nm, a {111}<110> bi-axial texture has been observed. In contrast, narrower lines of widths 120 and 70 nm reveal sidewall growth of {111} grains and a dominant <110> normal texture. The microstructure in these lines comprises clusters of small grains separated by high angle boundaries in the vicinity of large grains. The fraction of coherent twin boundaries also reduces with decreasing line width.

3.
Science ; 332(6037): 1537-41, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21566159

RESUMEN

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

4.
Langmuir ; 26(19): 15295-301, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20822109

RESUMEN

We describe the controlled assembly of silane-based copolymers on various interfaces that have surface silanol groups. This assembly occurs as a result of the formation of very robust siloxane bonds (Si-O-Si) due to a condensation reaction between the alkoxysilane groups of the polymers and surface hydroxyl groups of the substrates. Deposition of these copolymers is not self-limiting; therefore, they could not be assembled into discrete monolayers. However, UV-visible data collected as a function of deposition cycle reveals a linear relationship, confirming the deposition of a constant amount of polymer in each deposition cycle. A linear variation of layer thickness with deposition cycles is also observed. The assembled polymer layers are found to be very robust and resistant even when exposed to piranha solution for several hours.

5.
Microsc Microanal ; 16(5): 614-21, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20804634

RESUMEN

An electron diffraction technique called D-STEM has been developed in a transmission electron microscopy/scanning transmission electron microscopy (TEM/STEM) instrument to obtain spot electron diffraction patterns from nanostructures, as small as ∼3 nm. The electron ray path achieved by configuring the pre- and postspecimen illumination lenses enables the formation of a 1-2 nm near-parallel probe, which is used to obtain bright-field/dark-field STEM images. Under these conditions, the beam can be controlled and accurately positioned on the STEM image, at the nanostructure of interest, while sharp spot diffraction patterns can be simultaneously recorded on the charge-coupled device camera. When integrated with softwares such as GatanTM STEM diffraction imaging and Automated Crystallography for TEM or DigistarTM, NanoMEGAS, the D-STEM technique is very powerful for obtaining automated orientation and phase maps based on diffraction information acquired on a pixel by pixel basis. The versatility of the D-STEM technique is demonstrated by applying this technique to nanoparticles, nanowires, and nano interconnect structures.

6.
ACS Nano ; 4(1): 540-6, 2010 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-20055476

RESUMEN

There has been no attempt to date to specifically modify the nodes in carbon nanotube (CNT) networks. If the nodes can be modified in favorable ways, the electrical and/or thermal and/or mechanical properties of the CNT networks could be improved. In an attempt to influence the performance as a transparent conductive film, gold nanoparticles capped with the amino acid cysteine (Au-CysNP) have been selectively attached at the nodes of multiwalled carbon nanotubes (MWCNTs) networks. These nanoparticles have an average diameter of 5 nm as observed by TEM. FTIR and XPS were used to characterize each step of the MWCNT chemical functionalization process. The chemical process was designed to favor selective attachment at the nodes and not the segments in the CNT networks. The chemical processing was designed to direct formation of nodes where the gold nanoparticles are. The nanoparticles which were loosely held in the CNT network could be easily washed away by solvents, while those bound chemically remained. TEM results show that the Cys-AuNPs are preferentially located at the nodes of the CNT networks when compared to the segments. These nanoparticles at the nodes were also characterized by a novel technique called diffraction scanning transmission electron microscopy (D-STEM) confirming their identity. Four-probe measurements found that the sheet resistance of the modified CNT networks was half that of similarly transparent pristine multiwalled CNT networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...