Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Microbiol Spectr ; 11(6): e0459722, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37800970

IMPORTANCE: To combat the rapidly emerging drug-resistant M. tuberculosis, it is now essential to look for alternative therapeutics. Mycobacteriophages can be considered as efficient therapeutics due to their natural ability to infect and kill mycobacteria including M. tuberculosis. Here, we have exploited the mycolyl-arabinogalactan esterase property of LysB encoded from mycobacteriophage D29. This study is novel in terms of targeting a multi-drug-resistant pathogenic strain of M. tuberculosis with LysB and also examining the combination of anti-TB drugs and LysB. All the experiments include external administration of LysB. Therefore, the remarkable lytic activity of LysB overcomes the difficulty to enter the complex cell envelope of mycobacteria. Targeting the intracellularly located M. tuberculosis by LysB and non-toxicity to macrophages take the process of the development of LysB as a drug one step ahead, and also, the interaction studies with rifampicin and isoniazid will help to form a new treatment regimen against tuberculosis.


Mycobacteriophages , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Cell Membrane , Cell Wall
2.
Viruses ; 15(2)2023 02 13.
Article En | MEDLINE | ID: mdl-36851734

The challenge of antibiotic resistance has gained much attention in recent years due to the rapid emergence of resistant bacteria infecting humans and risking industries. Thus, alternatives to antibiotics are being actively searched for. In this regard, bacteriophages and their enzymes, such as endolysins, are a very attractive alternative. Endolysins are the lytic enzymes, which are produced during the late phase of the lytic bacteriophage replication cycle to target the bacterial cell walls for progeny release. Here, we cloned, expressed, and purified LysZC1 endolysin from Pseudomonas phage ZCPS1. The structural alignment, molecular dynamic simulation, and CD studies suggested LysZC1 to be majorly helical, which is highly similar to various phage-encoded lysozymes with glycoside hydrolase activity. Our endpoint turbidity reduction assay displayed the lytic activity against various Gram-positive and Gram-negative pathogens. Although in synergism with EDTA, LysZC1 demonstrated significant activity against Gram-negative pathogens, it demonstrated the highest activity against Bacillus cereus. Moreover, LysZC1 was able to reduce the numbers of logarithmic-phase B. cereus by more than 2 log10 CFU/mL in 1 h and also acted on the stationary-phase culture. Remarkably, LysZC1 presented exceptional thermal stability, pH tolerance, and storage conditions, as it maintained the antibacterial activity against its host after nearly one year of storage at 4 °C and after being heated at temperatures as high as 100 °C for 10 min. Our data suggest that LysZC1 is a potential candidate as a therapeutic agent against bacterial infection and an antibacterial bio-control tool in food preservation technology.


Bacteriophages , Pseudomonas Phages , Humans , Endopeptidases/genetics , Endopeptidases/pharmacology , Bacteriophages/genetics , Anti-Bacterial Agents/pharmacology
3.
Microbiology (Reading) ; 165(9): 1013-1023, 2019 09.
Article En | MEDLINE | ID: mdl-31264955

Mycobacteriophages are viruses that infect and kill mycobacteria. The peptidoglycan hydrolase, lysin A (LysA), coded by one of the most potent mycobacteriophages, D29, carries two catalytic domains at its N-terminus and a cell wall-binding domain at its C-terminus. Here, we have explored the importance of the centrally located lysozyme-like catalytic domain (LD) of LysA in phage physiology. We had previously identified an R198A substitution that causes inactivation of the LD when it is present alone on a polypeptide. Here, we show that upon incorporation of the same mutation (i.e. R350A) in full-length LysA, the protein demonstrates substantially reduced activity in vitro, even in the presence of the N-terminal catalytic domain, and has less efficient mycobacterial cell lysis ability when it is expressed in Mycobacterium smegmatis. These data suggest that an active LD is required for the full-length protein to function optimally. Moreover, a mutant D29 phage harbouring this substitution (D29R350A) in its LysA protein shows significantly delayed host M. smegmatis lysis. However, the mutant phage demonstrates an increase in burst size and plaque diameter. Taken together, our data show the importance of an intact LD region in D29 LysA PG hydrolase, and indicate an evolutionary advantage over other phages that lack such a domain in their endolysins.


Endopeptidases/genetics , Mycobacteriophages , Mycobacterium smegmatis/virology , N-Acetylmuramoyl-L-alanine Amidase/genetics , Catalytic Domain/genetics , Cell Wall/metabolism , Endopeptidases/chemistry , Endopeptidases/metabolism , Mutation , Mycobacteriophages/genetics , Mycobacteriophages/growth & development , Mycobacteriophages/metabolism , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
...