Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34770709

RESUMEN

Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset-i.e., representing variations in limb position or external loads-to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.


Asunto(s)
Miembros Artificiales , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Electromiografía , Mano , Humanos , Movimiento
2.
Sensors (Basel) ; 21(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802495

RESUMEN

Over the last few years, the Leap Motion Controller™ (LMC) has been increasingly used in clinical environments to track hand, wrist and forearm positions as an alternative to the gold-standard motion capture systems. Since the LMC is marker-less, portable, easy-to-use and low-cost, it is rapidly being adopted in healthcare services. This paper demonstrates the comparison of finger kinematic data between the LMC and a gold-standard marker-based motion capture system, Qualisys Track Manager (QTM). Both systems were time synchronised, and the participants performed abduction/adduction of the thumb and flexion/extension movements of all fingers. The LMC and QTM were compared in both static measuring finger segment lengths and dynamic flexion movements of all fingers. A Bland-Altman plot was used to demonstrate the performance of the LMC versus QTM with Pearson's correlation (r) to demonstrate trends in the data. Only the proximal interphalangeal joint (PIP) joint of the middle and ring finger during flexion/extension demonstrated acceptable agreement (r = 0.9062; r = 0.8978), but with a high mean bias. In conclusion, the study shows that currently, the LMC is not suitable to replace gold-standard motion capture systems in clinical settings. Further studies should be conducted to validate the performance of the LMC as it is updated and upgraded.


Asunto(s)
Mano , Articulación de la Muñeca , Fenómenos Biomecánicos , Articulaciones de los Dedos , Dedos , Humanos , Movimiento (Física) , Rango del Movimiento Articular , Estándares de Referencia
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(3): 612-620, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31976900

RESUMEN

Prosthetic devices for hand difference have advanced considerably in recent years, to the point where the mechanical dexterity of a state-of-the-art prosthetic hand approaches that of the natural hand. Control options for users, however, have not kept pace, meaning that the new devices are not used to their full potential. Promising developments in control technology reported in the literature have met with limited commercial and clinical success. We have previously described a biomechanical model of the hand that could be used for prosthesis control. The goal of this study was to evaluate the feasibility of this approach in terms of kinematic fidelity of model-predicted finger movement and the computational performance of the model. We show the performance of the model in replicating recorded hand and finger kinematics and find average correlations of 0.89 between modelled and recorded motions; we show that the computational performance of the simulations is fast enough to achieve real-time control with a robotic hand in the loop; and we describe the use of the model for controlling object gripping. Despite some limitations in accessing sufficient driving signals, the model performance shows promise as a controller for prosthetic hands when driven with recorded EMG signals. User-in-the-loop testing with amputees is necessary in future work to evaluate the suitability of available driving signals, and to examine translation of offline results to online performance.


Asunto(s)
Miembros Artificiales , Mano , Electromiografía , Dedos , Humanos , Movimiento , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...