Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3517, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664406

RESUMEN

The oxidative potential (OP) of particulate matter (PM) is a major driver of PM-associated health effects. In India, the emission sources defining PM-OP, and their local/regional nature, are yet to be established. Here, to address this gap we determine the geographical origin, sources of PM, and its OP at five Indo-Gangetic Plain sites inside and outside Delhi. Our findings reveal that although uniformly high PM concentrations are recorded across the entire region, local emission sources and formation processes dominate PM pollution. Specifically, ammonium chloride, and organic aerosols (OA) from traffic exhaust, residential heating, and oxidation of unsaturated vapors from fossil fuels are the dominant PM sources inside Delhi. Ammonium sulfate and nitrate, and secondary OA from biomass burning vapors, are produced outside Delhi. Nevertheless, PM-OP is overwhelmingly driven by OA from incomplete combustion of biomass and fossil fuels, including traffic. These findings suggest that addressing local inefficient combustion processes can effectively mitigate PM health exposure in northern India.

2.
Environ Sci Technol ; 58(1): 342-351, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38151765

RESUMEN

India is at a high risk of heat stress-induced health impacts and economic losses owing to its tropical climate, high population density, and inadequate adaptive planning. The health impacts of heat stress across climate zones in India have not been adequately explored. Here, we examine and report the vulnerability to heat stress in India using 42 years (1979-2020) of meteorological data from ERA-5 and developed climate-zone-specific percentile-based human comfort class thresholds. We found that the heat stress is usually 1-4 °C higher on heatwave (HW) days than on nonheatwave (NHW) days. However, the stress on NHW days remains considerable and cannot be neglected. We then showed the association of a newly formulated India heat index (IHI) with daily all-cause mortality in three cities - Delhi (semiarid), Varanasi (humid subtropical), and Chennai (tropical wet and dry), using a semiparametric quasi-Poisson regression model, adjusted for nonlinear confounding effects of time and PM2.5. The all-cause mortality risk was enhanced by 8.1% (95% confidence interval, CI: 6.0-10.3), 5.9% (4.6-7.2), and 8.0% (1.7-14.2) during "sweltering" days in Varanasi, Delhi, and Chennai, respectively, relative to "comfortable" days. Across four age groups, the impact was more severe in Varanasi (ranging from a 3.2 to 7.5% increase in mortality risk for a unit rise in IHI) than in Delhi (2.6-4.2% higher risk) and Chennai (0.9-5.7% higher risk). We observed a 3-6 days lag effect of heat stress on mortality in these cities. Our results reveal heterogeneity in heat stress impact across diverse climate zones in India and call for developing an early warning system keeping in mind these regional variations.


Asunto(s)
Calor , Clima Tropical , Humanos , India/epidemiología , Ciudades , Mortalidad
3.
Environ Sci Technol ; 57(48): 19190-19201, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37956255

RESUMEN

Ambient PM2.5 exposure statistics in countries with limited ground monitors are derived from satellite aerosol optical depth (AOD) products that have spatial gaps. Here, we quantified the biases in PM2.5 exposure and associated health burden in India due to the sampling gaps in AOD retrieved by a Moderate Resolution Imaging Spectroradiometer. We filled the sampling gaps and derived PM2.5 in recent years (2017-2022) over India, which showed fivefold cross-validation R2 of 0.92 and root mean square error (RMSE) of 11.8 µg m-3 on an annual scale against ground-based measurements. If the missing AOD values are not accounted for, the exposure would be overestimated by 19.1%, translating to an overestimation in the mortality burden by 93,986 (95% confidence interval: 78,638-110,597) during these years. With the gap-filled data, we found that the rising ambient PM2.5 trend in India has started showing a sign of stabilization in recent years. However, a reduction in population-weighted exposure balanced out the effect of the increasing population and maintained the mortality burden attributable to ambient PM2.5 for 2022 (991,058:798,220-1,183,896) comparable to the 2017 level (1,014,766:812,186-1,217,346). Therefore, a decline in exposure alone is not sufficient to significantly reduce the health burden attributable to ambient PM2.5 in India.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Sesgo , India , Contaminantes Atmosféricos/análisis
4.
iScience ; 26(10): 107856, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37817936

RESUMEN

India aims for ambitious solar energy goal to fulfill its climate commitment but there are limited studies on solar resource assessment considering both environmental and land availability constraints. The present work attempts to address this issue using satellite-derived air pollution, radiation, and land use data over the Indian region. Surface insolation over India has been decreasing at a rate of -0.29 ± 0.19 Wm-2 y-1 between 2001 and 2018. Solar resources over nearly 98%, 40%, and 39% of the Indian landmass are significantly impacted by aerosols, clouds, and both aerosols and clouds respectively. Only 29.3% of the Indian landmass is presently suitable for effective solar photovoltaic harnessing, but this is further declining by -0.21% annually, causing a presumptive loss of 50 GW solar potential, translating 75 TWh power generation. Lowering two decades of aerosol burden can make 8% additional landmass apt for photovoltaic use. Alleviating aerosol-induced dimming can fast-track India's solar energy expansion.

5.
Sci Total Environ ; 867: 161484, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639001

RESUMEN

Aerosols undergo significant changes due to water uptake under high RH conditions, leading to changes in physical, optical, and chemical properties. Detailed assessment and investigation are needed to understand better aerosol liquid water content (ALWC) characteristics in highly polluted regions like Delhi. Therefore, in this study, we examined the mass concentration and the factors governing the ALWC associated with PM2.5 in Delhi for two winters (Dec 2019 to Jan 2020 and Dec 2020 to Feb 2021) using the real-time measurements of NR-PM2.5 from Aerodyne aerosol chemical speciation monitor (ACSM) and the application of thermodynamic modeling (ISORROPIA II). The average NR-PM2.5 mass concentration in the 2020-2021 winter was 152 µg/m3, about 50 % higher than the average mass concentration of 102 µg/m3 in 2019-2020. Consequently, the ALWC was also 60 % higher during 2020-2021, with an average mass concentration of 150 µg/m3. ALWC increased exponentially with RH and is significant when RH > 80 %. Further, all the inorganic components of NR-PM2.5 were found to contribute significantly to ALWC uptake; however, the relative contribution varied in different RH conditions. Ammonium sulphate dominated the ALWC uptake among the inorganic components at low RH, but ammonium nitrate was the dominant contributor at high RH. The decreased chloride mass fraction in inorganics in the recent winters reduced its relative contribution to ALWC. High ALWC mass concentration during high PM2.5 and high RH leads to a significant reduction in visibility. We further validated this visibility reduction by estimating the enhanced light scattering coefficient (f(RH)) and found that the hygroscopic growth is responsible for the enhanced visibility reduction during high RH conditions (> 85 %) when light scattering efficiency increased by a factor of >3.5. Sensitivity tests of f(RH) on mass concentration of inorganic salts showed that all the salts contributed almost equally. As revealed in our study, variations in PM2.5 mass concentration and composition despite similar meteorological conditions between different winters indicate changing regional aerosol emissions. Therefore, long-term observations of ALWC and PM2.5 chemical composition are required to arrive at actionable measures and mitigation strategies. Further, the focus should be on reducing the overall inorganic mass concentrations of PM2.5 in general, decreasing the absolute ALWC, and improving visibility.

6.
Environ Sci Technol ; 56(20): 14605-14616, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36153963

RESUMEN

We investigated the influence of biomass burning (BURN), Diwali fireworks, and fog events on the ambient fine particulate matter (PM2.5) oxidative potential (OP) during the postmonsoon (PMON) and winter season in Delhi, India. The real-time hourly averaged OP (based on a dithiothreitol assay) and PM2.5 chemical composition were measured intermittently from October 2019 to January 2020. The peak extrinsic OP (OPv: normalized by the volume of air) was observed during the winter fog (WFOG) (5.23 ± 4.6 nmol·min-1·m-3), whereas the intrinsic OP (OPm; normalized by the PM2.5 mass) was the highest during the Diwali firework-influenced period (29.4 ± 18.48 pmol·min-1·µg-1). Source apportionment analysis using positive matrix factorization revealed that traffic + resuspended dust-related emissions (39%) and secondary sulfate + oxidized organic aerosols (38%) were driving the OPv during the PMON period, whereas BURN aerosols dominated (37%) the OPv during the WFOG period. Firework-related emissions became a significant contributor (∼32%) to the OPv during the Diwali period (4 day period from October 26 to 29), and its contribution peaked (72%) on the night of Diwali. Discerning the influence of seasonal and episodic sources on health-relevant properties of PM2.5, such as OP, could help better understand the causal relationships between PM2.5 and health effects in India.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Biomasa , Ditiotreitol , Polvo/análisis , Monitoreo del Ambiente , India , Estrés Oxidativo , Material Particulado/análisis , Estaciones del Año , Sulfatos , Emisiones de Vehículos/análisis
7.
Sci Total Environ ; 852: 158442, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055485

RESUMEN

Within the framework of COALESCE project (Carbonaceous aerosol emissions, source apportionment, and climate impacts) initiative, spatio-temporal distribution of aerosol optical properties from three general circulation models are evaluated against aerosol data from satellite observations (MODIS and CALIPSO) and ground-based measurements (AERONET) for the period 2005-2014. The GCMs, NICAM-SPRINTARS (N-S), ECHAM6.3-HAM2.3 (E-H), CAM5.3 (CAM), input with identical emissions from the SMoG-India-v1 emission inventory over India nested in the CEDS global inventory, including all emission sectors except sea salt and soil dust. The annual mean total aerosol optical depth (AOD) averaged over the Indian land region is 0.38, 0.27, and 0.17 from the N-S, CAM, and E-H models respectively, while the annual mean value from the MODIS observational dataset is 0.43. Single scattering albedo predicted by E-H is lower compared to CAM and N-S while model predictions of Angstrom exponent are closer to MERRA2 dataset. However, the average total aerosol column burden over Indian landmass simulated by the models is very close and comparable to the reanalysis results. Statistical analysis of AOD between model and AERONET measurements at nine sites shows that the root mean square error varies from 0.1 to 0.4 and the index of agreement (average value) is ∼0.4. The aerosol emission and transport models, methodology for calculation of aerosol optical properties and their mixing states contributes to the diversity in the results from various models. The present study provides an analysis of limitations and uncertainties contributing to the differences between the simulations and observations, and the inter-model diversity.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Atmosféricos/análisis , Esmog , Monitoreo del Ambiente/métodos , Aerosoles/análisis , Polvo/análisis , India , Suelo
8.
Sci Total Environ ; 794: 148589, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214816

RESUMEN

It is well established that light-absorbing organic aerosols (commonly known as brown carbon, BrC) impact climate. However, uncertainties remain as their contributions to absorption at different wavelengths are often ignored in climate models. Further, BrC exhibits differences in absorption at different wavelengths due to the variable composition including varying sources and meteorological conditions. However, diurnal variability in the spectral characteristics of water-soluble BrC (hereafter BrC) is not yet reported. This study presents unique measurement hitherto lacking in the literature. Online measurements of BrC were performed using an assembled system including a particle-into-liquid sampler, portable UV-Visible spectrophotometer with liquid waveguid capillary cell, and total carbon analyzer (PILS-LWCC-TOC). This system measured the absorption of ambient aerosol extracts at the wavelengths ranging from 300 to 600 nm with 2 min integration time and water-soluble organic carbon (WSOC) with 4 min integration time over a polluted megacity, New Delhi. Black carbon, carbon monoxide (CO), nitrogen oxides (NOx), and the chemical composition of non-refractory submicron aerosols were also measured in parallel. Diurnal variability in absorption coefficient (0.05 to 65 Mm-1), mass absorption efficiency (0.01 to 3.4 m-2 gC-1) at 365 nm, and absorption angstrom exponent (AAE) of BrC for different wavelength range (AAE300-400: 4.2-5.8; AAE400-600: 5.5-8.0; and AAE300-600: 5.3-7.3) is discussed. BrC chromophores absorbing at any wavelength showed minimum absorption during afternoon hours, suggesting the effects of boundary layer expansion and their photo-sensitive/volatile nature. On certain days, a considerable presence of BrC absorbing at 490 nm was observed during nighttime that disappears during the daytime. It appeared to be associated with secondary BrC. Observations also infer that BrC species emitted from the biomass and coal burning are more absorbing among all sources. A fraction of BrC is likely associated with trash burning, as inferred from the spectral characteristics of Factor-3 from the PMF analysis of BrC spectra. Such studies are essential in understanding the BrC characteristics and their further utilization in climate models.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , India , Material Particulado/análisis , Agua
9.
Environ Int ; 153: 106541, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33845290

RESUMEN

The Government of India (GOI) announced a nationwide lockdown starting 25th March 2020 to contain the spread of COVID-19, leading to an unprecedented decline in anthropogenic activities and, in turn, improvements in ambient air quality. This is the first study to focus on highly time-resolved chemical speciation and source apportionment of PM2.5 to assess the impact of the lockdown and subsequent relaxations on the sources of ambient PM2.5 in Delhi, India. The elemental, organic, and black carbon fractions of PM2.5 were measured at the IIT Delhi campus from February 2020 to May 2020. We report source apportionment results using positive matrix factorization (PMF) of organic and elemental fractions of PM2.5 during the different phases of the lockdown. The resolved sources such as vehicular emissions, domestic coal combustion, and semi-volatile oxygenated organic aerosol (SVOOA) were found to decrease by 96%, 95%, and 86%, respectively, during lockdown phase-1 as compared to pre-lockdown. An unforeseen rise in O3 concentrations with declining NOx levels was observed, similar to other parts of the globe, leading to the low-volatility oxygenated organic aerosols (LVOOA) increasing to almost double the pre-lockdown concentrations during the last phase of the lockdown. The effect of the lockdown was found to be less pronounced on other resolved sources like secondary chloride, power plants, dust-related, hydrocarbon-like organic aerosols (HOA), and biomass burning related emissions, which were also swayed by the changing meteorological conditions during the four lockdown phases. The results presented in this study provide a basis for future emission control strategies, quantifying the extent to which constraining certain anthropogenic activities can ameliorate the ambient air. These results have direct relevance to not only Delhi but the entire Indo-Gangetic plain (IGP), citing similar geographical and meteorological conditions common to the region along with overlapping regional emission sources. SUMMARY OF MAIN FINDINGS: We identify sources like vehicular emissions, domestic coal combustion, and semi-volatile oxygenated organic aerosol (SVOOA) to be severely impacted by the lockdown, whereas ozone levels and, in turn, low-volatility oxygenated organic aerosols (LVOOA) rise by more than 95% compared to the pre-lockdown concentrations during the last phase of the lockdown. However, other sources resolved in this study, like secondary chloride, power plants, dust-related, hydrocarbon-like organic aerosols (HOA), and biomass burning related emissions, were mainly driven by the changes in the meteorological conditions rather than the lockdown.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , India , Material Particulado/análisis , SARS-CoV-2 , Estaciones del Año , Emisiones de Vehículos/análisis
10.
Sci Total Environ ; 770: 145324, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33736388

RESUMEN

National Capital Region (NCR) encompassing New Delhi is one of the most polluted urban metropolitan areas in the world. Real-time chemical characterization of fine particulate matter (PM1 and PM2.5) was carried out using three aerosol mass spectrometers, two aethalometers, and one single particle soot photometer (SP2) at two sites in Delhi (urban) and one site located ~40 km downwind of Delhi, during January-March 2018. The campaign mean PM2.5 (NR-PM2.5 + BC) concentrations at the two urban sites were 153.8 ± 109.4 µg.m-3 and 127.8 ± 83.2 µg.m-3, respectively, whereas PM1 (NR-PM1 + BC) was 72.3 ± 44.0 µg.m-3 at the downwind site. PM2.5 particles were composed mostly of organics (43-44)% followed by chloride (14-17)%, ammonium (9-11)%, nitrate (9%), sulfate (8-10)%, and black carbon (11-16)%, whereas PM1 particles were composed of 47% organics, 13% sulfate as well as ammonium, 11% nitrate as well as chloride, and 5% black carbon. Organic aerosol (OA) source apportionment was done using positive matrix factorization (PMF), solved using an advanced multi-linear engine (ME-2) model. Highly mass-resolved OA mass spectra at one urban and downwind site were factorized into three primary organic aerosol (POA) factors including one traffic-related and two solid-fuel combustion (SFC), and three oxidized OA (OOA) factors. Whereas unit mass resolution OA at the other urban site was factorized into two POA factors related to traffic and SFC, and one OOA factor. OOA constituted a majority of the total OA mass (45-55)% with maximum contribution during afternoon hours ~(70-80)%. Significant differences in the absolute OOA concentration between the two urban sites indicated the influence of local emissions on the oxidized OA formation. Similar PM chemical composition, diurnal and temporal variations at the three sites suggest similar type of sources affecting the particulate pollution in Delhi and adjoining cities, but variability in mass concentration suggest more local influence than regional.

11.
Sci Total Environ ; 742: 140332, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167294

RESUMEN

Delhi, the capital of India, suffers from heavy local emissions as well as regional transport of air pollutants, resulting in severe aerosol loadings. To determine the sources of these pollutants, we have quantified the mass concentrations of 26 elements in airborne particles, measured by an online X-ray fluorescence spectrometer with time resolution between 30 min and 1 h. Measurements of PM10 and PM2.5 (particulate matter <10 µm and < 2.5 µm) were conducted during two consecutive winters (2018 and 2019) in Delhi. On average, 26 elements from Al to Pb made up ~25% and ~19% of the total PM10 mass (271 µg m-3 and 300 µg m-3) in 2018 and 2019, respectively. Nine different aerosol sources were identified during both winters using positive matrix factorization (PMF), including dust, non-exhaust, an S-rich factor, two solid fuel combustion (SFC) factors and four industrial/combustion factors related to plume events (Cr-Ni-Mn, Cu-Cd-Pb, Pb-Sn-Se and Cl-Br-Se). All factors were resolved in both size ranges (but varying relative concentrations), comprising the following contributions to the elemental PM10 mass (in % average for 2018 and 2019): Cl-Br-Se (41.5%, 36.9%), dust (27.6%, 28.7%), non-exhaust (16.2%, 13.7%), S-rich (6.9%, 9.2%), SFC1 + SFC2 (4%, 7%), Pb-Sn-Se (2.3%, 1.66%), Cu-Cd-Pb (0.67%, 2.2%) and Cr-Ni-Mn (0.57%, 0.47%). Most of these sources had the highest relative contributions during late night (22:00 local time (LT)) and early morning hours (between 03:00 to 08:00 LT), which is consistent with enhanced emissions into a shallow boundary layer. Modelling of airmass source geography revealed that the Pb-Sn-Se, Cl-Br-Se and SFC2 factors prevailed for northwest winds (Pakistan, Punjab, Haryana and Delhi), while the Cu-Cd-Pb and S-rich factors originated from east (Nepal and Uttar Pradesh) and the Cr-Ni-Mn factor from northeast (Uttar Pradesh). In contrast, SFC1, dust and non-exhaust were not associated with any specific wind direction.

12.
Nat Commun ; 9(1): 3754, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30217981

RESUMEN

Measurements and models show that enhanced aerosol concentrations can modify macro- and micro-physical properties of clouds. Here, we examine the effect of aerosols on continental mesoscale convective cloud systems during the Indian summer monsoon and find that these aerosol-cloud interactions have a net cooling effect at the surface and the top-of-atmosphere. Long-term (2002-2016) satellite data provide evidence of aerosol-induced cloud invigoration effect (AIvE) during the Indian summer monsoon. The AIvE leads to enhanced formation of thicker stratiform anvil clouds at higher altitudes. These AIvE-induced stratiform anvil clouds are also relatively brighter because of the presence of smaller sized ice particles. As a result, AIvE-induced increase in shortwave cloud radiative forcing is much larger than longwave cloud radiative forcing leading to the intensified net cooling effect of clouds over the Indian summer monsoon region. Such aerosol-induced cooling could subsequently decrease the surface diurnal temperature range and have significant feedbacks on lower tropospheric turbulence in a warmer and polluted future scenario.

13.
Eur J Pharmacol ; 470(1-2): 103-12, 2003 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-12787838

RESUMEN

Inflammatory bowel disease is characterized by oxidative and nitrosative stress, leukocyte infiltration and upregulation of proinflammatory cytokines. The aim of the present study was to examine the protective effects of thearubigin, an anti-inflammatory and anti-oxidant beverage derivative, on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice, a model for inflammatory bowel disease. Intestinal lesions (judged by macroscopic and histological score) were associated with neutrophil infiltration (measured as increase in myeloperoxidase activity in the mucosa), increased serine protease activity (may be involved in the degradation of colonic tissue) and high levels of malondialdehyde (an indicator of lipid peroxidation). Both nitric oxide (NO) and O(2)(-) were increased with concomitant upregulation in the mRNA expression of proinflammatory cytokine response and inducible NO synthase (iNOS). Dose-response studies revealed that pretreatment of mice with thearubigin (40 mg kg(-1) day(-1), i.g. for 10 days) significantly ameliorated the appearance of diarrhoea and the disruption of colonic architecture. Higher dose (100 mg kg(-1)) had comparable effects. This was associated with a significant reduction in the degree of both neutrophil infiltration and lipid peroxidation in the inflamed colon as well as decreased serine protease activity. Thearubigin also reduced the levels of NO and O(2)(-) associated with the favourable expression of T-helper 1 cytokines and iNOS. Consistent with these observations, nuclear factor kappa B (NF-kappa B) activation in colonic mucosa was suppressed in thearubigin-treated mice. The results of this study suggest that thearubigin, the most predominant polyphenol of black tea, exerts beneficial effects in experimental colitis and may, therefore, be useful in the treatment of inflammatory bowel disease.


Asunto(s)
Catequina/análogos & derivados , Catequina/uso terapéutico , Colitis/prevención & control , Flavonoides/uso terapéutico , Fenoles/uso terapéutico , , Ácido Trinitrobencenosulfónico/toxicidad , Animales , Catequina/farmacología , Colitis/inducido químicamente , Colitis/patología , Relación Dosis-Respuesta a Droga , Femenino , Flavonoides/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos BALB C , Fenoles/farmacología , Polifenoles
14.
Phytother Res ; 16 Suppl 1: S40-4, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11933138

RESUMEN

The antitumour effect of tea was evaluated in the 3-methylcholanthrene (3-MC) induced solid tumour model in mice. Both black and green tea inhibited tumour growth and prevented metastasis. Histopathological study showed that tea treatment was able to reduce malignancy. Superoxide dismutase (SOD), a free radical scavenger, was found to be significantly increased in the serum of mice administered tea. Moreover, tea extracts were able to reduce the level of thiobarbituric acid reactive substance (TBARS) in the sera of mice. Tea extracts (both black and green) also showed antiinflammatory activity in the carrageenan-induced paw oedema model in the rat.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Edema/prevención & control , Neoplasias/prevención & control , Fitoterapia , Extractos Vegetales/uso terapéutico , , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Carragenina , Edema/inducido químicamente , Masculino , Metilcolantreno , Ratones , Ratones Endogámicos BALB C , Neoplasias/inducido químicamente , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Superóxido Dismutasa/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA