Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
ACS Infect Dis ; 10(2): 676-687, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38287902

Iron, as an essential micronutrient, plays a crucial role in host-pathogen interactions. In order to limit the growth of the pathogen, a common strategy of innate immunity includes withdrawing available iron to interfere with the cellular processes of the microorganism. Against that, unicellular parasites have developed powerful strategies to scavenge iron, despite the effort of the host. Iron-sequestering compounds, such as the approved and potent chelator deferoxamine (DFO), are considered a viable option for therapeutic intervention. Since iron is heavily utilized in the mitochondrion, targeting iron chelators in this organelle could constitute an effective therapeutic strategy. This work presents mitochondrially targeted DFO, mitoDFO, as a candidate against a range of unicellular parasites with promising in vitro efficiency. Intracellular Leishmania infection can be cleared by this compound, and experimentation with Trypanosoma brucei 427 elucidates its possible mode of action. The compound not only affects iron homeostasis but also alters the physiochemical properties of the inner mitochondrial membrane, resulting in a loss of function. Furthermore, investigating the virulence factors of pathogenic yeasts confirms that mitoDFO is a viable candidate for therapeutic intervention against a wide spectrum of microbe-associated diseases.


Anti-Infective Agents , Iron , Deferoxamine/chemistry , Antiparasitic Agents/pharmacology , Iron Chelating Agents/pharmacology , Iron Chelating Agents/therapeutic use , Mitochondria
2.
PLoS Pathog ; 19(12): e1011899, 2023 Dec.
Article En | MEDLINE | ID: mdl-38150475

Centrins are small calcium-binding proteins that have a variety of roles and are universally associated with eukaryotic centrosomes. Rapid proliferation of the malaria-causing parasite Plasmodium falciparum in the human blood depends on a particularly divergent and acentriolar centrosome, which incorporates several essential centrins. Their precise mode of action, however, remains unclear. In this study calcium-inducible liquid-liquid phase separation is revealed as an evolutionarily conserved principle of assembly for multiple centrins from P. falciparum and other species. Furthermore, the disordered N-terminus and calcium-binding motifs are defined as essential features for reversible biomolecular condensation, and we demonstrate that certain centrins can form co-condensates. In vivo analysis using live cell STED microscopy shows liquid-like dynamics of centrosomal centrin. Additionally, implementation of an inducible protein overexpression system reveals concentration-dependent formation of extra-centrosomal centrin assemblies with condensate-like properties. The timing of foci formation and dissolution suggests that centrin assembly is regulated. This study thereby provides a new model for centrin accumulation at eukaryotic centrosomes.


Calcium , Parasites , Animals , Humans , Calcium/metabolism , Parasites/metabolism , Calcium-Binding Proteins/metabolism , Centrosome/metabolism
3.
mBio ; 14(4): e0077923, 2023 08 31.
Article En | MEDLINE | ID: mdl-37345936

Plasmodium falciparum proliferates through schizogony in the clinically relevant blood stage of infection. During schizogony, consecutive rounds of DNA replication and nuclear division give rise to multinucleated stages before cellularization occurs. Although these nuclei reside in a shared cytoplasm, DNA replication and nuclear division occur asynchronously. Here, by mapping the proteomic context of the S-phase-promoting kinase PfCRK4, we show that it has a dual role for nuclear-cycle progression: PfCRK4 orchestrates not only DNA replication, but in parallel also the rearrangement of intranuclear microtubules from hemispindles into early mitotic spindles. Live-cell imaging of a reporter parasite showed that these microtubule rearrangements coincide with the onset of DNA replication. Together, our data render PfCRK4 a key factor for nuclear-cycle progression, linking entry into S-phase with the initiation of mitotic events. In part, such links may compensate for the absence of canonical cell cycle checkpoints in P. falciparum. IMPORTANCE The human malaria parasite Plasmodium falciparum proliferates in erythrocytes through schizogony, forming multinucleated stages before cellularization occurs. In marked contrast to the pattern of proliferation seen in most model organisms, P. falciparum nuclei multiply asynchronously despite residing in a shared cytoplasm. This divergent mode of replication is, thus, a good target for therapeutic interventions. To exploit this potential, we investigated a key regulator of the parasite's unusual cell cycle, the kinase PfCRK4 and found that this kinase regulated not only DNA replication but also in parallel the rearrangement of nuclear microtubules into early mitotic spindles. Since canonical cell cycle checkpoints have not been described in P. falciparum parasites, linking entry into S-phase and the initiation of mitotic events via a kinase, may be an alternative means to exert control, which is typically achieved by checkpoints.


Malaria, Falciparum , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Proteomics , Cell Division , Cell Cycle , S Phase , Malaria, Falciparum/parasitology , Erythrocytes/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
4.
PLoS Pathog ; 19(5): e1011325, 2023 05.
Article En | MEDLINE | ID: mdl-37130129

Malaria-causing parasites achieve rapid proliferation in human blood through multiple rounds of asynchronous nuclear division followed by daughter cell formation. Nuclear divisions critically depend on the centriolar plaque, which organizes intranuclear spindle microtubules. The centriolar plaque consists of an extranuclear compartment, which is connected via a nuclear pore-like structure to a chromatin-free intranuclear compartment. Composition and function of this non-canonical centrosome remain largely elusive. Centrins, which reside in the extranuclear part, are among the very few centrosomal proteins conserved in Plasmodium falciparum. Here we identify a novel centrin-interacting centriolar plaque protein. Conditional knock down of this Sfi1-like protein (PfSlp) caused a growth delay in blood stages, which correlated with a reduced number of daughter cells. Surprisingly, intranuclear tubulin abundance was significantly increased, which raises the hypothesis that the centriolar plaque might be implicated in regulating tubulin levels. Disruption of tubulin homeostasis caused excess microtubules and aberrant mitotic spindles. Time-lapse microscopy revealed that this prevented or delayed mitotic spindle extension but did not significantly interfere with DNA replication. Our study thereby identifies a novel extranuclear centriolar plaque factor and establishes a functional link to the intranuclear compartment of this divergent eukaryotic centrosome.


Microtubules , Protozoan Proteins , Tubulin , Centrosome/metabolism , Homeostasis , Microtubules/metabolism , Tubulin/genetics , Plasmodium falciparum , Protozoan Proteins/genetics
5.
PLoS Pathog ; 19(3): e1011157, 2023 03.
Article En | MEDLINE | ID: mdl-36862652

Malaria remains a significant threat to global health, and despite concerted efforts to curb the disease, malaria-related morbidity and mortality increased in recent years. Malaria is caused by unicellular eukaryotes of the genus Plasmodium, and all clinical manifestations occur during asexual proliferation of the parasite inside host erythrocytes. In the blood stage, Plasmodium proliferates through an unusual cell cycle mode called schizogony. Contrary to most studied eukaryotes, which divide by binary fission, the parasite undergoes several rounds of DNA replication and nuclear division that are not directly followed by cytokinesis, resulting in multinucleated cells. Moreover, despite sharing a common cytoplasm, these nuclei multiply asynchronously. Schizogony challenges our current models of cell cycle regulation and, at the same time, offers targets for therapeutic interventions. Over the recent years, the adaptation of advanced molecular and cell biological techniques have given us deeper insight how DNA replication, nuclear division, and cytokinesis are coordinated. Here, we review our current understanding of the chronological events that characterize the unusual cell division cycle of P. falciparum in the clinically relevant blood stage of infection.


Malaria, Falciparum , Parasites , Plasmodium , Animals , Cell Division , Cell Cycle , Cytokinesis , Eukaryota
6.
Antimicrob Agents Chemother ; 66(8): e0072722, 2022 08 16.
Article En | MEDLINE | ID: mdl-35856666

Many of the currently available anti-parasitic and anti-fungal frontline drugs have severe limitations, including adverse side effects, complex administration, and increasing occurrence of resistance. The discovery and development of new therapeutic agents is a costly and lengthy process. Therefore, repurposing drugs with already established clinical application offers an attractive, fast-track approach for novel treatment options. In this study, we show that the anti-cancer drug candidate MitoTam, a mitochondria-targeted analog of tamoxifen, efficiently eliminates a wide range of evolutionarily distinct pathogens in vitro, including pathogenic fungi, Plasmodium falciparum, and several species of trypanosomatid parasites, causative agents of debilitating neglected tropical diseases. MitoTam treatment was also effective in vivo and significantly reduced parasitemia of two medically important parasites, Leishmania mexicana and Trypanosoma brucei, in their respective animal infection models. Functional analysis in the bloodstream form of T. brucei showed that MitoTam rapidly altered mitochondrial functions, particularly affecting cellular respiration, lowering ATP levels, and dissipating mitochondrial membrane potential. Our data suggest that the mode of action of MitoTam involves disruption of the inner mitochondrial membrane, leading to rapid organelle depolarization and cell death. Altogether, MitoTam is an excellent candidate drug against several important pathogens, for which there are no efficient therapies and for which drug development is not a priority.


Antineoplastic Agents , Trypanosoma brucei brucei , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Drug Repositioning , Membrane Potential, Mitochondrial , Plasmodium falciparum
7.
Methods Mol Biol ; 2470: 425-433, 2022.
Article En | MEDLINE | ID: mdl-35881363

Immunofluorescence labeling enables the detection and characterization of various parasite proteins presented on the surface of the infected red blood cell. Several approaches for immunofluorescence detection of red blood cell surface-presented proteins of Plasmodium spp. have been successfully established and published over the years. However, finding the right approach depends on the scientific question, and different protocols have different advantages. Here, we discuss some aspects that should be considered and present an easily applicable protocol for labeling parasite surface antigens, which subsequently can be analyzed by immunofluorescence microscopy (or flow cytometry).


Erythrocytes , Plasmodium falciparum , Antigens, Surface/metabolism , Erythrocytes/metabolism , Membrane Proteins/metabolism , Microscopy, Fluorescence/methods , Plasmodium falciparum/metabolism , Staining and Labeling
8.
Sci Adv ; 8(13): eabj5362, 2022 04.
Article En | MEDLINE | ID: mdl-35353560

Malaria-causing parasites proliferate within erythrocytes through schizogony, forming multinucleated stages before cellularization. Nuclear multiplication does not follow a strict geometric 2n progression, and each proliferative cycle produces a variable number of progeny. Here, by tracking nuclei and DNA replication, we show that individual nuclei replicate their DNA at different times, despite residing in a shared cytoplasm. Extrapolating from experimental data using mathematical modeling, we provide strong indication that a limiting factor exists, which slows down the nuclear multiplication rate. Consistent with this prediction, our data show that temporally overlapping DNA replication events were significantly slower than partially overlapping or nonoverlapping events. Our findings suggest the existence of evolutionary pressure that selects for asynchronous DNA replication, balancing available resources with rapid pathogen proliferation.


Cell Nucleus , Plasmodium falciparum , Cell Division , DNA Replication , Erythrocytes/parasitology , Plasmodium falciparum/genetics
9.
Pflugers Arch ; 474(5): 553-565, 2022 05.
Article En | MEDLINE | ID: mdl-35169901

Paracrine ATP release by erythrocytes has been shown to regulate endothelial cell function via purinergic signaling, and this erythoid-endothelial signaling network is pathologically dysregulated in sickle cell disease. We tested the role of extracellular ATP-mediated purinergic signaling in the activation of Psickle, the mechanosensitive Ca2+-permeable cation channel of human sickle erythrocytes (SS RBC). Psickle activation increases intracellular [Ca2+] to stimulate activity of the RBC Gardos channel, KCNN4/KCa3.1, leading to cell shrinkage and accelerated deoxygenation-activated sickling.We found that hypoxic activation of Psickle recorded by cell-attached patch clamp in SS RBC is inhibited by extracellular apyrase, which hydrolyzes extracellular ATP. Hypoxic activation of Psickle was also inhibited by the pannexin-1 inhibitor, probenecid, and by the P2 antagonist, suramin. A Psickle-like activity was also activated in normoxic SS RBC (but not in control red cells) by bath pH 6.0. Acid-activated Psickle-like activity was similarly blocked by apyrase, probenecid, and suramin, as well as by the Psickle inhibitor, Grammastola spatulata mechanotoxin-4 (GsMTx-4).In vitro-differentiated cultured human sickle reticulocytes (SS cRBC), but not control cultured reticulocytes, also exhibited hypoxia-activated Psickle activity that was abrogated by GsMTx-4. Psickle-like activity in SS cRBC was similarly elicited by normoxic exposure to acid pH, and this acid-stimulated activity was nearly completely blocked by apyrase, probenecid, and suramin, as well as by GsMTx-4.Thus, hypoxia-activated and normoxic acid-activated cation channel activities are expressed in both SS RBC and SS cRBC, and both types of activation appear to be mediated or greatly amplified by autocrine or paracrine purinergic signaling.


Anemia, Sickle Cell , Reticulocytes , Adenosine Triphosphate/metabolism , Anemia, Sickle Cell/metabolism , Apyrase/metabolism , Cations/metabolism , Cells, Cultured , Erythrocytes/metabolism , Humans , Hydrogen-Ion Concentration , Hypoxia/metabolism , Probenecid/metabolism , Reticulocytes/metabolism , Suramin/metabolism , Suramin/pharmacology
10.
Redox Biol ; 48: 102177, 2021 Oct 31.
Article En | MEDLINE | ID: mdl-34773836

Decreased susceptibilities of the human malaria parasite Plasmodium falciparum towards the endoperoxide antimalarial artemisinin are linked to mutations of residue C580 of PfKelch13, a homologue of the redox sensor Keap1 and other vertebrate BTB-Kelch proteins. Here, we addressed whether mutations alter the artemisinin susceptibility by modifying the redox properties of PfKelch13 or by compromising its native fold or abundance. Using selection-linked integration and the glmS ribozyme, efficient down-regulation of PfKelch13 resulted in ring-stage survival rates around 40%. While the loss of the thiol group of C469 or of the potential disulfide bond between residues C580 and C532 had no effect on the artemisinin susceptibility, the thiol group of C473 could not be replaced. Furthermore, we detected two different forms of PfKelch13 with distinct electrophoretic mobilities around 85 and 95 kDa, suggesting an unidentified post-translational modification. We also established a protocol for the production of recombinant PfKelch13 and produced an antibody against the protein. Recombinant PfKelch13 adopted alternative oligomeric states and only two of its seven cysteine residues, C469 and C473, reacted with Ellman's reagent. While common field mutations resulted in misfolded and completely insoluble recombinant PfKelch13, cysteine-to-serine replacements had no effect on the solubility except for residue C473. In summary, in contrast to residues C469, C532, and C580, the surface-exposed thiol group of residue C473 appears to be essential. However, not the redox properties but impaired folding of PfKelch13, resulting in a decreased PfKelch13 abundance, alters the artemisinin susceptibility and is the central parameter for mutant selection.

11.
Life Sci Alliance ; 4(11)2021 11.
Article En | MEDLINE | ID: mdl-34535568

Proliferation of Plasmodium falciparum in red blood cells is the cause of malaria and is underpinned by an unconventional cell division mode, called schizogony. Contrary to model organisms, P. falciparum replicates by multiple rounds of nuclear divisions that are not interrupted by cytokinesis. Organization and dynamics of critical nuclear division factors remain poorly understood. Centriolar plaques, the centrosomes of P. falciparum, serve as microtubule organizing centers and have an acentriolar, amorphous structure. The small size of parasite nuclei has precluded detailed analysis of intranuclear microtubule organization by classical fluorescence microscopy. We apply recently developed super-resolution and time-lapse imaging protocols to describe microtubule reconfiguration during schizogony. Analysis of centrin, nuclear pore, and microtubule positioning reveals two distinct compartments of the centriolar plaque. Whereas centrin is extranuclear, we confirm by correlative light and electron tomography that microtubules are nucleated in a previously unknown and extended intranuclear compartment, which is devoid of chromatin but protein-dense. This study generates a working model for an unconventional centrosome and enables a better understanding about the diversity of eukaryotic cell division.


Centrosome/physiology , Intranuclear Space/metabolism , Microtubules/metabolism , Cell Division/physiology , Cell Line , Centrosome/metabolism , Chromatin , Cytokinesis , Humans , Microtubule-Organizing Center/physiology , Microtubules/physiology , Nuclear Pore , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism
12.
Trends Parasitol ; 37(9): 777-779, 2021 09.
Article En | MEDLINE | ID: mdl-34332896

Plasmodium merozoites invade erythrocytes in a stepwise manner through ligand binding, calcium signaling, and membrane deformation. Using a recently developed light-sheet microscope, Geoghegan et al. investigated invasion with unprecedented temporal resolution. Their spectacular footage revealed roles for host cell cholesterol and pore formation at the parasite-host cell interface.


Malaria , Plasmodium , Animals , Merozoites , Microscopy , Protozoan Proteins
13.
Front Cell Infect Microbiol ; 11: 660679, 2021.
Article En | MEDLINE | ID: mdl-33898332

Plasmodium, the unicellular parasite that causes malaria, evolved a highly unusual mode of reproduction. During its complex life cycle, invasive or transmissive stages alternate with proliferating stages, where a single parasite can produce tens of thousands of progeny. In the clinically relevant blood stage of infection, the parasite replicates its genome up to thirty times and forms a multinucleated cell before daughter cells are assembled. Thus, within a single cell cycle, Plasmodium develops from a haploid to a polypoid cell, harboring multiple copies of its genome. Polyploidy creates several biological challenges, such as imbalances in genome output, and cells can respond to this by changing their size and/or alter the production of RNA species and protein to achieve expression homeostasis. However, the effects and possible adaptations of Plasmodium to the massively increasing DNA content are unknown. Here, we revisit and embed current Plasmodium literature in the context of polyploidy and propose potential mechanisms of the parasite to cope with the increasing gene dosage.


Malaria , Plasmodium , Cell Size , DNA , Humans , Plasmodium/genetics , Protozoan Proteins , Reproduction
14.
Bioessays ; 43(3): e2000257, 2021 03.
Article En | MEDLINE | ID: mdl-33377226

Emergence of the novel pathogenic coronavirus SARS-CoV-2 and its rapid pandemic spread presents challenges that demand immediate attention. Here, we describe the development of a semi-quantitative high-content microscopy-based assay for detection of three major classes (IgG, IgA, and IgM) of SARS-CoV-2 specific antibodies in human samples. The possibility to detect antibodies against the entire viral proteome together with a robust semi-automated image analysis workflow resulted in specific, sensitive and unbiased assay that complements the portfolio of SARS-CoV-2 serological assays. Sensitive, specific and quantitative serological assays are urgently needed for a better understanding of humoral immune response against the virus as a basis for developing public health strategies to control viral spread. The procedure described here has been used for clinical studies and provides a general framework for the application of quantitative high-throughput microscopy to rapidly develop serological assays for emerging virus infections.


Antibodies, Viral/blood , COVID-19/diagnosis , Immunoassay , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Microscopy/methods , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Testing/methods , Fluorescent Antibody Technique , High-Throughput Screening Assays , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Immune Sera/chemistry , Machine Learning , Sensitivity and Specificity
15.
Parasitol Res ; 119(12): 4297-4302, 2020 Dec.
Article En | MEDLINE | ID: mdl-33089360

Malaria is caused by unicellular parasites of the genus Plasmodium, which reside in erythrocytes during the clinically relevant stage of infection. To separate parasite from host cell material, haemolytic agents such as saponin are widely used. Previous electron microscopy studies on saponin-treated parasites reported both, parasites enclosed by the erythrocyte membrane and liberated from the host cell. These ambiguous reports prompted us to investigate haemolysis by live-cell time-lapse microscopy. Using either saponin or streptolysin O to lyse Plasmodium falciparum-infected erythrocytes, we found that ring-stage parasites efficiently exit the erythrocyte upon haemolysis. For late-stage parasites, we found that only approximately half were freed, supporting the previous electron microscopy studies. Immunofluorescence imaging indicated that freed parasites were surrounded by the parasitophorous vacuolar membrane. These results may be of interest for future work using haemolytic agents to enrich for parasite material.


Erythrocytes/parasitology , Hemolysis/drug effects , Plasmodium falciparum/physiology , Saponins/pharmacology , Streptolysins/pharmacology , Bacterial Proteins/pharmacology , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/parasitology , Erythrocytes/drug effects , Extracellular Vesicles/parasitology , Humans , Life Cycle Stages/physiology , Microscopy , Plasmodium falciparum/growth & development
17.
Nat Microbiol ; 2: 17017, 2017 Feb 17.
Article En | MEDLINE | ID: mdl-28211852

Plasmodium parasites, the causative agents of malaria, have evolved a unique cell division cycle in the clinically relevant asexual blood stage of infection1. DNA replication commences approximately halfway through the intracellular development following invasion and parasite growth. The schizont stage is associated with multiple rounds of DNA replication and nuclear division without cytokinesis, resulting in a multinucleated cell. Nuclei divide asynchronously through schizogony, with only the final round of DNA replication and segregation being synchronous and coordinated with daughter cell assembly2,3. However, the control mechanisms for this divergent mode of replication are unknown. Here, we show that the Plasmodium-specific kinase PfCRK4 is a key cell-cycle regulator that orchestrates multiple rounds of DNA replication throughout schizogony in Plasmodium falciparum. PfCRK4 depletion led to a complete block in nuclear division and profoundly inhibited DNA replication. Quantitative phosphoproteomic profiling identified a set of PfCRK4-regulated phosphoproteins with greatest functional similarity to CDK2 substrates, particularly proteins involved in the origin of replication firing. PfCRK4 was required for initial and subsequent rounds of DNA replication during schizogony and, in addition, was essential for development in the mosquito vector. Our results identified an essential S-phase promoting factor of the unconventional P. falciparum cell cycle. PfCRK4 is required for both a prolonged period of the intraerythrocytic stage of Plasmodium infection, as well as for transmission, revealing a broad window for PfCRK4-targeted chemotherapeutics.


CDC2 Protein Kinase/metabolism , DNA Replication , Life Cycle Stages/genetics , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism , Schizonts/physiology , CDC2 Protein Kinase/genetics , Cell Cycle , Cytokinesis , Erythrocytes/parasitology , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Phosphoproteins/genetics , Phosphoproteins/metabolism , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
18.
Cell Host Microbe ; 18(1): 49-60, 2015 Jul 08.
Article En | MEDLINE | ID: mdl-26118996

Apicomplexans invade a variety of metazoan host cells through mechanisms involving host cell receptor engagement and secretion of parasite factors to facilitate cellular attachment. We find that the parasite homolog of calcineurin, a calcium-regulated phosphatase complex central to signal transduction in eukaryotes, also contributes to host cell invasion by the malaria parasite Plasmodium falciparum and related Toxoplasma gondii. Using reverse-genetic and chemical-genetic approaches, we determine that calcineurin critically regulates and stabilizes attachment of extracellular P. falciparum to host erythrocytes before intracellular entry and has similar functions in host cell engagement by T. gondii. Calcineurin-mediated Plasmodium invasion is strongly associated with host receptors required for host cell recognition, and calcineurin function distinguishes this form of receptor-mediated attachment from a second mode of host-parasite adhesion independent of host receptors. This specific role of calcineurin in coordinating physical interactions with host cells highlights an ancestral mechanism for parasitism used by apicomplexans.


Calcineurin/metabolism , Cell Adhesion , Plasmodium falciparum/enzymology , Plasmodium falciparum/physiology , Toxoplasma/enzymology , Toxoplasma/physiology , Erythrocytes/parasitology , Fibroblasts/parasitology , Humans
19.
Mol Microbiol ; 96(1): 84-94, 2015 Apr.
Article En | MEDLINE | ID: mdl-25565321

Accurate regulation of microfilament dynamics is central to cell growth, motility and response to environmental stimuli. Stabilizing and depolymerizing proteins control the steady-state levels of filamentous (F-) actin. Capping protein (CP) binds to free barbed ends, thereby arresting microfilament growth and restraining elongation to remaining free barbed ends. In all CPs characterized to date, alpha and beta subunits form the active heterodimer. Here, we show in a eukaryotic parasitic cell that the two CP subunits can be functionally separated. Unlike the beta subunit, the CP alpha subunit of the apicomplexan parasite Plasmodium is refractory to targeted gene deletion during blood infection in the mammalian host. Combinatorial complementation of Plasmodium berghei CP genes with the orthologs from Plasmodium falciparum verified distinct activities of CP alpha and CP alpha/beta during parasite life cycle progression. Recombinant Plasmodium CP alpha could be produced in Escherichia coli in the absence of the beta subunit and the protein displayed F-actin capping activity. Thus, the functional separation of two CP subunits in a parasitic eukaryotic cell and the F-actin capping activity of CP alpha expand the repertoire of microfilament regulatory mechanisms assigned to CPs.


Actin Capping Proteins/metabolism , Plasmodium berghei/metabolism , Plasmodium falciparum/metabolism , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Actins/metabolism , Gene Expression Profiling , Malaria/blood , Malaria/physiopathology , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Models, Molecular , Plasmodium berghei/genetics , Plasmodium berghei/pathogenicity , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Protein Binding , Protein Subunits/metabolism , Protozoan Proteins/metabolism , Real-Time Polymerase Chain Reaction , Recombinant Proteins/metabolism
20.
Cell Host Microbe ; 16(2): 177-186, 2014 Aug 13.
Article En | MEDLINE | ID: mdl-25121747

The asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P. falciparum histone deacetylase 2 (PfHda2), is a global silencer of virulence gene expression and controls the frequency of switching from the asexual cycle to sexual development. PfHda2 depletion leads to dysregulated expression of both virulence-associated var genes and PfAP2-g, a transcription factor controlling sexual conversion, and is accompanied by increases in gametocytogenesis. Mathematical modeling further indicates that PfHda2 has likely evolved to optimize the parasite's infectious period by achieving low frequencies of virulence gene expression switching and sexual conversion. This common regulation of cellular transcriptional programs mechanistically links parasite transmissibility and virulence.


Antigens, Protozoan/immunology , Histone Deacetylases/physiology , Plasmodium falciparum/enzymology , Protozoan Proteins/physiology , Amino Acid Sequence , Cells, Cultured , Epigenesis, Genetic , Genes, Protozoan , Heterochromatin/genetics , Heterochromatin/metabolism , Host-Parasite Interactions , Humans , Molecular Sequence Data , Plasmodium falciparum/cytology , Virulence/genetics
...