Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Stem Cell Res Ther ; 15(1): 71, 2024 Mar 12.
Article En | MEDLINE | ID: mdl-38475825

BACKGROUND: Liver transplantation remains the only curative treatment for end-stage liver diseases. Unfortunately, there is a drastic organ donor shortage. Hepatocyte transplantation emerged as a viable alternative to liver transplantation. Considering their unique expansion capabilities and their potency to be driven toward a chosen cell fate, pluripotent stem cells are extensively studied as an unlimited cell source of hepatocytes for cell therapy. It has been previously shown that freshly prepared hepatocyte-like cells can cure mice from acute and chronic liver failure and restore liver function. METHODS: Human PSC-derived immature hepatic progenitors (GStemHep) were generated using a new protocol with current good manufacturing practice compliant conditions from PSC amplification and hepatic differentiation to cell cryopreservation. The therapeutic potential of these cryopreserved cells was assessed in two clinically relevant models of acute liver failure, and the mode of action was studied by several analytical methods, including unbiased proteomic analyses. RESULTS: GStemHep cells present an immature hepatic phenotype (alpha-fetoprotein positive, albumin negative), secrete hepatocyte growth factor and do not express major histocompatibility complex. A single dose of thawed GStemHep rescue mice from sudden death caused by acetaminophen and thioacetamide-induced acute liver failure, both in immunodeficient and immunocompetent animals in the absence of immunosuppression. Therapeutic biological effects were observed as soon as 3 h post-cell transplantation with a reduction in serum transaminases and in liver necrosis. The swiftness of the therapeutic effect suggests a paracrine mechanism of action of GStemHep leading to a rapid reduction of inflammation as well as a rapid cytoprotective effect with as a result a proteome reprograming of the host hepatocytes. The mode of action of GStemHep relie on the alleviation of inhibitory factors of liver regeneration, an increase in proliferation-promoting factors and a decrease in liver inflammation. CONCLUSIONS: We generated cryopreserved and current good manufacturing practice-compliant human pluripotent stem cell-derived immature hepatic progenitors that were highly effective in treating acute liver failure through rapid paracrine effects reprogramming endogenous hepatocytes. This is also the first report highlighting that human allogeneic cells could be used as cryopreserved cells and in the absence of immunosuppression for human PSC-based regenerative medicine for acute liver failure.


Liver Failure, Acute , Pluripotent Stem Cells , Humans , Animals , Mice , Proteomics , Liver/metabolism , Hepatocytes/metabolism , Liver Failure, Acute/therapy , Cell Differentiation , Inflammation/metabolism
2.
Biomacromolecules ; 24(2): 789-796, 2023 02 13.
Article En | MEDLINE | ID: mdl-36655630

Macroporous hydrogels have great potential for biomedical applications. Liquid or gel-like pores were created in a photopolymerizable hydrogel by forming water-in-water emulsions upon mixing aqueous solutions of gelatin and a poly(ethylene oxide) (PEO)-based triblock copolymer. The copolymer constituted the continuous matrix, which dominated the mechanical properties of the hydrogel once photopolymerized. The gelatin constituted the dispersed phase, which created macropores in the hydrogel. The microstructures of the porous hydrogel were determined by the volume fraction of the gelatin phase. When volume fractions were close to 50 v%, free-standing hydrogels with interpenetrated morphology can be obtained thanks to the addition of a small amount of xanthan. The hydrogels displayed Young's moduli ranging from 5 to 30 kPa. They have been found to be non-swellable and non-degradable in physiological conditions. Preliminary viability tests with hepatic progenitor cells embedded in monophasic PEO-based hydrogels showed rapid mortality of the cells, whereas encouraging viability was observed in PEO-based triblock copolymer/gelatin macroporous hydrogels. The latter has the potential to be used in cell therapy.


Gelatin , Hydrogels , Hydrogels/chemistry , Gelatin/chemistry , Ethylene Oxide , Cell Encapsulation , Polyethylene Glycols/chemistry , Polymers , Stem Cells , Water
3.
BMC Biol ; 21(1): 8, 2023 01 12.
Article En | MEDLINE | ID: mdl-36635667

BACKGROUND: Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS: We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS: This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.


CD8-Positive T-Lymphocytes , T-Lymphocytes, Regulatory , Rats , Animals , T-Lymphocytes, Regulatory/metabolism , CD8-Positive T-Lymphocytes/metabolism , Interleukin-2/genetics , Interleukin-2/metabolism , Transforming Growth Factor beta/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
4.
Cancers (Basel) ; 14(22)2022 Nov 16.
Article En | MEDLINE | ID: mdl-36428719

Despite advances in clinical management, osteosarcoma and Ewing sarcoma, the two most frequent malignant primary bone tumors at pediatric age, still have a poor prognosis for high-risk patients (i.e., relapsed or metastatic disease). Triggering a TRAIL pro-apoptotic pathway represents a promising therapeutic approach, but previous studies have described resistance mechanisms that could explain the declining interest of such an approach in clinical trials. In this study, eight relevant human cell lines were used to represent the heterogeneity of the response to the TRAIL pro-apoptotic effect in pediatric bone tumors and two cell-derived xenograft models were developed, originating from a sensitive and a resistant cell line. The DR5 agonist antibody AMG655 (Conatumumab) was selected as an example of TRAIL-based therapy. In both TRAIL-sensitive and TRAIL-resistant cell lines, two signaling pathways were activated following AMG655 treatment, the canonical extrinsic apoptotic pathway and a non-apoptotic pathway, involving the recruitment of RIPK1 on the DR5 protein complex, activating both pro-survival and pro-proliferative effectors. However, the resulting balance of these two pathways was different, leading to apoptosis only in sensitive cells. In vivo, AMG655 treatment reduced tumor development of the sensitive model but accelerated tumor growth of the resistant one. We proposed two independent strategies to overcome this issue: (1) a proof-of-concept targeting of RIPK1 by shRNA approach and (2) the use of a novel highly-potent TRAIL-receptor agonist; both shifting the balance in favor of apoptosis. These observations are paving the way to resurrect TRAIL-based therapies in pediatric bone tumors to help predict the response to treatment, and propose a relevant adjuvant strategy for future therapeutic development.

5.
J Immunother Cancer ; 8(1)2020 01.
Article En | MEDLINE | ID: mdl-32001504

BACKGROUND: Genome editing offers unique perspectives for optimizing the functional properties of T cells for adoptive cell transfer purposes. So far, PDCD1 editing has been successfully tested mainly in chimeric antigen receptor T (CAR-T) cells and human primary T cells. Nonetheless, for patients with solid tumors, the adoptive transfer of effector memory T cells specific for tumor antigens remains a relevant option, and the use of high avidity T cells deficient for programmed cell death-1 (PD-1) expression is susceptible to improve the therapeutic benefit of these treatments. METHODS: Here we used the transfection of CAS9/sgRNA ribonucleoproteic complexes to edit PDCD1 gene in human effector memory CD8+ T cells specific for the melanoma antigen Melan-A. We cloned edited T cell populations and validated PDCD1 editing through sequencing and cytometry in each T cell clone, together with T-cell receptor (TCR) chain's sequencing. We also performed whole transcriptomic analyses on wild-type (WT) and edited T cell clones. Finally, we documented in vitro and in vivo through adoptive transfer in NOD scid gamma (NSG) mice, the antitumor properties of WT and PD-1KO T cell clones, expressing the same TCR. RESULTS: Here we demonstrated the feasibility to edit PDCD1 gene in human effector memory melanoma-specific T lymphocytes. We showed that PD-1 expression was dramatically reduced or totally absent on PDCD1-edited T cell clones. Extensive characterization of a panel of T cell clones expressing the same TCR and exhibiting similar functional avidity demonstrated superior antitumor reactivity against a PD-L1 expressing melanoma cell line. Transcriptomic analysis revealed a downregulation of genes involved in proliferation and DNA replication in PD-1-deficient T cell clones, whereas genes involved in metabolism and cell signaling were upregulated. Finally, we documented the superior ability of PD-1-deficient T cells to significantly delay the growth of a PD-L1 expressing human melanoma tumor in an NSG mouse model. CONCLUSION: The use of such lymphocytes for adoptive cell transfer purposes, associated with other approaches modulating the tumor microenvironment, would be a promising alternative to improve immunotherapy efficacy in solid tumors.


Immunotherapy, Adoptive/methods , Melanoma/immunology , Melanoma/therapy , Programmed Cell Death 1 Receptor/deficiency , T-Lymphocytes, Cytotoxic/immunology , Animals , Cell Line, Tumor , Female , Gene Editing , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Random Allocation , Transfection , Xenograft Model Antitumor Assays
6.
Int J Cancer ; 139(12): 2802-2811, 2016 Dec 15.
Article En | MEDLINE | ID: mdl-27558972

Ewing sarcoma (EWS) is the second most frequent pediatric malignant bone tumor. EWS patients have not seen any major therapeutic progress in the last 30 years, in particular in the case of metastatic disease, which requires new therapeutic strategies. The pro-apoptotic cytokine TNF-Related Apoptosis Inducing Ligand (TRAIL) can selectively kill tumor cells while sparing normal cells, making it a promising therapeutic tool in several types of cancer. However, certain EWS cell lines appear resistant to recombinant human (rh) TRAIL-induced apoptosis. We therefore hypothesized that a TRAIL presentation at the surface of the carrier cells might overcome this resistance and trigger apoptosis. For this purpose, human adipose mesenchymal stromal/stem cells (MSC) transfected in a stable manner to express full-length human TRAIL were co-cultured with several human EWS cell lines, inducing apoptosis by cell-to-cell contact even in cell lines initially resistant to rhTRAIL or AMG655, an antibody agonist to the death receptor, DR5. In vivo, TRAIL delivered by MSCs was able to counteract tumor progression in two orthotopic models of Ewing sarcoma, associated with caspase activation, indicating that a cell-based delivery of a potent apoptosis-inducing factor could be relevant in EWS.


Cell Transformation, Neoplastic/genetics , Mesenchymal Stem Cells/metabolism , Sarcoma, Ewing/etiology , Sarcoma, Ewing/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , Animals , Apoptosis/genetics , Caspases/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Gene Expression , Genes, Reporter , Heterografts , Humans , Mice , Sarcoma, Ewing/mortality , Sarcoma, Ewing/pathology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Transduction, Genetic
...