Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Free Radic Biol Med ; 210: 318-332, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052274

RESUMEN

Iron accumulation is one of the most essential pathological events after subarachnoid hemorrhage (SAH). Ferroportin1 (FPN1) is the only transmembrane protein responsible for exporting iron. Hepcidin, as the major regulator of FPN1, is responsible for its degradation. Our study investigated how the interaction between FPN1 and hepcidin contributes to iron accumulation after SAH. We found that iron accumulation aggravated after SAH, along with decreased FPN1 in neurons and increased hepcidin in astrocytes. After knocking down hepcidin in astrocytes, the neuronal FPN1 significantly elevated, thus attenuating iron accumulation. After SAH, p-Smad1/5 and Smad4 tended to translocate into the nucleus. Moreover, Smad4 combined more fragments of the promoter region of Hamp after OxyHb stimulation. By knocking down Smad1/5 or Smad4 in astrocytes, FPN1 level restored and iron overload attenuated, leading to alleviated neuronal cell death and improved neurological function. However, the protective role disappeared after recombinant hepcidin administration. Therefore, our study suggests that owing to the nuclear translocation of transcription factors p-Smad1/5 and Smad4, astrocyte-derived hepcidin increased significantly after SAH, leading to a decreased level of neuronal FPN1, aggravation of iron accumulation, and worse neurological outcome.


Asunto(s)
Hepcidinas , Hemorragia Subaracnoidea , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Astrocitos/metabolismo , Hemorragia Subaracnoidea/patología , Hierro/metabolismo , Neuronas/metabolismo
2.
Front Mol Neurosci ; 16: 1121944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063365

RESUMEN

Introduction: Endothelial nitric oxide synthase (eNOS) uncoupling plays a significant role in acute vasoconstriction during early brain injury (EBI) after subarachnoid hemorrhage (SAH). Astrocytes in the neurovascular unit extend their foot processes around endothelia. In our study, we tested the hypothesis that increased nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression in astrocytes after SAH leads to eNOS uncoupling. Methods: We utilized laser speckle contrast imaging for monitoring cortical blood flow changes in mice, nitric oxide (NO) kits to measure the level of NO, and a co-culture system to study the effect of astrocytes on endothelial cells. Moreover, the protein levels were assessed by Western blot and immunofluorescence staining. We used CCK-8 to measure the viability of astrocytes and endothelial cells, and we used the H2O2 kit to measure the H2O2 released from astrocytes. We used GSK2795039 as an inhibitor of NOX2, whereas lentivirus and adeno-associated virus were used for dihydrofolate reductase (DHFR) knockdown in vivo and in vitro. Results: The expression of NOX2 and the release of H2O2 in astrocytes are increased, which was accompanied by a decrease in endothelial DHFR 12 h after SAH. Moreover, the eNOS monomer/dimer ratio increased, leading to a decrease in NO and acute cerebral ischemia. All of the above were significantly alleviated after the administration of GSK2795039. However, after knocking down DHFR both in vivo and in vitro, the protective effect of GSK2795039 was greatly reversed. Discussion: The increased level of NOX2 in astrocytes contributes to decreased DHFR in endothelial cells, thus aggravating eNOS uncoupling, which is an essential mechanism underlying acute vasoconstriction after SAH.

3.
Brain Res ; 1808: 148324, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36921750

RESUMEN

BACKGROUND: Ketones are not only utilized to produce energy but also play a neuroprotective role in many neurodegenerative diseases. However, whether this process has an impact on secondary brain damage after traumatic brain injury (TBI) remains unknown. OXCT1 (3-Oxoacid CoA-Transferase 1) is the rate-limiting enzyme in the intra-neuronal utilization of ketones. In this study, we investigated whether reduced expression of OXCT1 after TBI could impact neuroprotective mechanisms and exacerbate neurological dysfunction. MATERIALS AND METHODS: Experimental TBI was induced by a modified version of the weight drop model, it is a model of severe head trauma. Expression of OXCT1 in the injured hippocampus of mice was measured at different time points using immunoblotting assays. The release of abnormal mitochondrial cytochrome c from neurons of the mouse injured lateral hippocampus was measured 1 week after TBI using immunoblotting assays. Neuronal death was assessed by Nissl staining and the level of reactive oxygen species (ROS) within the neurons of the injured lateral hippocampus was assessed by Dihydroethidium staining. RESULTS: OXCT1 was overexpressed in hippocampal neurons by injection of adeno-associated virus into the lateral ventricle. OXCT1 expression levels decreased significantly 1 week post-TBI. After comparing the data obtained from different groups of mice, OXCT1 was found to significantly increase the expression of SIRT3 and reduce the proportion of acetylated SOD2, thus decreasing the production of ROS in the injured hippocampal neurons, reducing neuronal death, and improving cognitive function. CONCLUSIONS: OXCT1 has a critical previously unappreciated protective role in neurological impairment following TBI via the SIR3-SOD2 pathway. These findings highlight the potential of OXCT1 as a simple treatment for patients with TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Fármacos Neuroprotectores , Sirtuina 3 , Animales , Ratones , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Cetonas , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo
4.
Free Radic Biol Med ; 193(Pt 2): 499-510, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36336227

RESUMEN

Endothelial malfunction is a major contributor to early or delayed vasospasm after subarachnoid hemorrhage (SAH). As a representative form of endothelial dysfunction, endothelial nitric oxide synthase (eNOS) uncoupling leads to a reduction in nitric oxide (NO) generated by endothelial cells. In this study, we investigated how the interaction between endothelial NOX4 (nicotinamide adenine dinucleotide phosphate oxidase 4) and DHFR (dihydrofolate reductase) contributes to eNOS uncoupling after SAH. Setanaxib and the adeno-associated virus (AAV) targeting brain vascular endothelia were injected through the tail vein and the expression and localization of proteins were examined by western blot and immunofluorescence staining. The NO content was measured using the NO assay kit, and laser speckle contrast imaging was used to assess cortical perfusion. ROS (reactive oxygen species) level was detected by DHE (dihydroethidium) staining, DCFH-DA (2',7'-dichlorofluorescin diacetate) staining and H2O2 (hydrogen peroxide) measurement. The Garcia score was employed to examine neurological function. Setanaxib is widely used for its preferential inhibition for NOX1/4 over other NOX isoforms. After endothelial NOX4 was inhibited by Setanaxib in a mouse model of SAH, the endothelial DHFR level was significantly elevated, which attenuated eNOS uncoupling, increased cortical perfusion, and improved the neurological function. The protective role of inhibiting endothelial NOX4, however, disappeared after knocking down endothelial DHFR. Our results suggest that endothelial DHFR decreased significantly because of the elevated level of endothelial NOX4, which aggravated eNOS uncoupling after SAH, leading to decreased cortical perfusion and worse neurological outcome.


Asunto(s)
Óxido Nítrico Sintasa de Tipo III , Hemorragia Subaracnoidea , Animales , Ratones , Células Endoteliales/metabolismo , Peróxido de Hidrógeno/metabolismo , NADPH Oxidasa 4/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
5.
J Neurotrauma ; 39(5-6): 423-434, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861788

RESUMEN

Clinically, the renin-angiotensin-aldosterone system is activated intensely in patients with moderate to severe traumatic brain injury (TBI). Increased angiotensin II in circulatory blood after TBI can enter the brain through the disrupted blood-brain barrier. Angiotensin-converting enzyme 2 (ACE2) is an enzyme that metabolizes angiotensin II into angiotensin (1-7), which has been shown to have neuroprotective results. The expression and role of ACE2 in the brain after TBI remains elusive, however. We found that ACE2 protein abundance was downregulated around the contusional area in the brains of both humans and mice. Endogenous ACE2 was expressed in neurons, astrocytes, and microglia in the cortex of the mouse brain. Administration of recombinant human ACE2 intracerebroventricularly alleviated neurological defects after TBI in mice. Treatment of recombinant human ACE2 suppressed TBI-induced increase of angiotensin II and the decrease of angiotensin (1-7) in the brain, mitigated neural cell death, reduced the activation of NLRP3 and caspase3, decreased phosphorylation of mitogen-activated protein kinases, and nuclear factor kappa B, and reduced inflammatory cytokines tumor necrosis factor alpha and interleukin-1ß. Administration of ACE2 enzyme activator diminazene aceturate intraperitoneally rescued downregulation of ACE2 enzymatic activity and protein abundance in the brain. Diminazene aceturate treatment once per day in the acute stage after TBI alleviated long-term cognitive defects and neuronal loss in mice. Collectively, these results indicated that restoration of ACE2 alleviated neurological deficits after TBI by mitigation of pyroptosis and apoptosis.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Lesiones Traumáticas del Encéfalo , Angiotensina II/metabolismo , Animales , Apoptosis , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Humanos , Ratones , Peptidil-Dipeptidasa A/metabolismo , Piroptosis
6.
Front Pharmacol ; 13: 1061457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703738

RESUMEN

Background: Erythrocytes and their breakdown products in the subarachnoid space (SAS) are the main contributors to the pathogenesis of subarachnoid hemorrhage (SAH). Dobutamine is a potent ß1-adrenoreceptor agonist that can increase cardiac output, thus improving blood perfusion and arterial pulsation in the brain. In this study, we investigated whether the administration of dobutamine promoted the clearance of red blood cells (RBCs) and their degraded products via meningeal lymphatic vessels (mLVs), thus alleviating neurological deficits in the early stage post-SAH. Materials and methods: Experimental SAH was induced by injecting autologous arterial blood into the prechiasmatic cistern in male C57BL/6 mice. Evans blue was injected into the cisterna magna, and dobutamine was administered by inserting a femoral venous catheter. RBCs in the deep cervical lymphatic nodes (dCLNs) were evaluated by hematoxylin-eosin staining, and the hemoglobin content in dCLNs was detected by Drabkin's reagent. The accumulation of RBCs in the dura mater was examined by immunofluorescence staining, neuronal death was evaluated by Nissl staining, and apoptotic cell death was evaluated by TUNEL staining. The Morris water maze test was used to examine the cognitive function of mice after SAH. Results: RBCs appeared in dCLNs as early as 3 h post-SAH, and the hemoglobin in dCLNs peaked at 12 h after SAH. Dobutamine significantly promoted cerebrospinal fluid (CSF) drainage from the SAS to dCLNs and obviously reduced the RBC residue in mLVs, leading to a decrease in neuronal death and an improvement in cognitive function after SAH. Conclusion: Dobutamine administration significantly promoted RBC drainage from cerebrospinal fluid in the SAS via mLVs into dCLNs, ultimately relieving neuronal death and improving cognitive function.

7.
Neurosci Lett ; 753: 135882, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33838260

RESUMEN

Traumatic brain injury (TBI) is a substantial clinical and social problem worldwide, causing high morbidity and mortality along with significant economic and medical costs. Forkhead box O transcription factors (FOXOs) have been found to play a critical role in the regulation of cell functions, such as nutrient metabolism, programmed cell death, and tumor suppression. In the central nervous system, FOXOs are reported to be pivotal regulators of learning and memory, neurite outgrowth, and axonal degeneration. However, the role of FOXOs in TBI is still unknown. Here, we investigate changes in the expression of FOXOs in the acute stage following TBI. First, we evaluated the expression of FOXO proteins in the brains of humans after TBI. A TBI model was then established in mice, and the ipsilateral cerebral cortex was collected at 3 h, 6 h, 9 h, 12 h, 24 h, and 72 h post-TBI. The dynamic expression of Foxo proteins was observed. Neuron-specific localization of Foxos was detected by double immunofluorescence staining. Following TBI, FOXO proteins in the brains of humans were significantly increased. In mice, Foxo protein levels generally peaked at 24 h. By examining co-localization with neurons, the proportion of Foxo(+) neurons was found to increase following TBI and peak at 24 h. This study reveals the time-dependent and neuron-specific expression of Foxos following TBI in mice, providing insight to enhance understanding of the role of Foxos in TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Encéfalo/patología , Factores de Transcripción Forkhead/metabolismo , Adolescente , Adulto , Anciano , Animales , Encéfalo/citología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neuronas/metabolismo
8.
Neuroreport ; 32(6): 472-478, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788818

RESUMEN

Traumatic brain injury (TBI) is recognized as the most influential risk factor for neurodegenerative diseases later in life, including Alzheimer's disease. The aberrant genesis of amyloid-ß peptides, which is triggered by TBI, is associated with the development of Alzheimer's disease. Evidence suggests that iron plays a role in both the production of amyloid-ß and its neurotoxicity, and iron overload has been noted in the brain after TBI. We therefore investigated the effects of an iron-chelating treatment on amyloid-ß genesis in a weight-drop model of TBI in mice. Human brain samples were obtained from patients undergoing surgery for severe brain trauma. The Institute of Cancer Research mice were treated with deferoxamine by intraperitoneal injection after TBI induction. Changes in amyloid-ß(1-42) were assessed using western blot and immunohistochemical staining. Ferritin was also detected using western blot to investigate iron deposition in the mice brain. Immunofluorescent terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was also performed to evaluate neural apoptosis. The amyloid-ß(1-42) was markedly elevated after TBI in both humans and mice. Deferoxamine treatment in mice significantly decreased the levels of both amyloid-ß(1-42) and ferritin in the brain, and reduced TBI-induced neural cell apoptosis. The iron chelator deferoxamine can alleviate the increase of amyloid-ß(1-42) in the brain after TBI, and may therefore be a potential therapeutic strategy to prevent TBI patients from undergoing neurodegenerative processes.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Deferoxamina/farmacología , Ferritinas/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/efectos de los fármacos , Sideróforos/farmacología , Adulto , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/patología , Humanos , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/metabolismo
9.
Int J Med Sci ; 18(2): 304-313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390799

RESUMEN

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. A sequence of pathological processes occurred when there is TBI. Previous studies showed that sphingosine-1-phosphate receptor 1 (S1PR1) played a critical role in inflammatory response in the brain after TBI. Thus, the present study was designed to evaluate the effects of the S1PR1 modulator FTY720 on neurovascular unit (NVU) after experimental TBI in mice. The weight-drop TBI method was used to induce TBI. Western blot (WB) was performed to determine the levels of SIPR1, claudin-5 and occludin at different time points. FTY720 was intraperitoneally administered to mice after TBI was induced. The terminal deoxynucleotidyl transferase-dUTP nick end labeling (TUNEL) assay was used to assess endothelial cell apoptosis. Immunofluorescence and WB were performed to measure the expression of tight junction proteins: claudin-5 and occludin. Evans blue (EB) permeability assay and brain water content were applied to evaluate the blood-brain barrier (BBB) permeability and brain edema. Immunohistochemistry was performed to assess the activation of astrocytes and microglia. The results showed that FTY720 administration reduced endothelial cell apoptosis and improved BBB permeability. FTY720 also attenuated astrocytes and microglia activation. Furthermore, treatment with FTY720 not only improved neurological function, but also increased the survival rate of mice significantly. These findings suggest that FTY720 administration restored the structure of the NVU after experimental TBI by decreasing endothelial cell apoptosis and attenuating the activation of astrocytes. Moreover, FTY720 might reduce inflammation in the brain by reducing the activation of microglia in TBI mice.


Asunto(s)
Astrocitos/efectos de los fármacos , Barrera Hematoencefálica/efectos de los fármacos , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Clorhidrato de Fingolimod/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Astrocitos/patología , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/patología , Permeabilidad Capilar/efectos de los fármacos , Modelos Animales de Enfermedad , Células Endoteliales/patología , Humanos , Inyecciones Intraperitoneales , Ratones , Ratones Endogámicos ICR
10.
Int J Neurosci ; 129(8): 801-807, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30648894

RESUMEN

Background: Treatment of blast-induced traumatic brain injury (bTBI) has been hindered. Previous studies have demonstrated that oxidative stress may contribute to the pathophysiological process. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) signaling pathway exhibits a protective effect after traumatic brain injury (TBI). This study explored whether the Nrf2-ARE pathway was activated in a modified bTBI mouse model. Method: Mice were randomly divided into six groups: the 6 h, 1 d, 3 d, 7 d and 14 d after bTBI groups and a sham group. The protein levels of nuclear Nrf2, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO1) were detected using western blot, and HO-1 and NQO1 mRNA levels were determined by real-time quantitative polymerase chain reaction. Moreover, HO-1 and Nrf2 were localized using histological staining. Results: The protein level of the Nrf2-ARE pathway in the frontal lobe increased significantly in the 3 d after bTBI. The HO-1 and NQO1 mRNA levels also reached a peak in the frontal lobe 3 d after bTBI. The histological staining demonstrated higher expression of HO-1 in the frontal lobe and hippocampus 3 d after bTBI, when nuclear import of Nrf2 reached a peak in the frontal lobe. Conclusions: bTBI activated the Nrf2-ARE signaling pathway in the brain. The peak activation time in the frontal lobe may be 3 d after injury, and activating the Nrf2 pathway could be a new direction for treatment.


Asunto(s)
Traumatismos por Explosión/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lóbulo Frontal/lesiones , Lóbulo Frontal/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Animales , Modelos Animales de Enfermedad , Masculino , Ratones
11.
Oncol Rep ; 30(1): 157-64, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23673813

RESUMEN

NF-E2-related factor 2 (Nrf2) is a pivotal transcription factor of cellular responses to oxidative stress and recent evidence suggests that Nrf2 plays an important role in cancer pathobiology. However, the underlying mechanism has yet to be elucidated, particularly in glioma. In the present study, we investigated the role of Nrf2 in the clinical prognosis, cell proliferation and tumor growth of human glioblastoma multiforme (GBM). We detected overexpression of Nrf2 protein levels in GBM compared to normal brain tissues. Notably, higher protein levels of Nrf2 were significantly associated with poorer overall survival and 1-year survival for GBM patients. Furthermore, we constructed the plasmid Si-Nrf2 and transduced it into U251MG cells to downregulate the expression of Nrf2 and established stable Nrf2 knockdown cells. The downregulation of Nrf2 suppressed cell proliferation in vitro and tumor growth in mouse xenograft models. We performed immunohistochemistry staining to detect the protein levels of Nrf2, Ki-67, caspase-3 and CD31 in the xenograft tumors and found that the expression levels of Nrf2 and Ki-67 were much lower in the Si-Nrf2 group compared to the Si-control group. In addition, the number of caspase-3-positive cells was significantly increased in the Si-Nrf2 group. By analysis of microvessel density (MVD) assessed by CD31, the MVD value in the Si-Nrf2 group decreased significantly compared to the Si-control group. These findings indicate that the knockdown of Nrf2 may suppress tumor growth by inhibiting cell proliferation, increasing cell apoptosis and inhibiting angiogenesis. These results highlight the potential of Nrf2 as a candidate molecular target to control GBM cell proliferation and tumor growth.


Asunto(s)
Glioblastoma/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/genética , Encéfalo/metabolismo , Encéfalo/patología , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/biosíntesis , Trasplante de Neoplasias , Neovascularización Patológica/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA