Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(29): 20379-20390, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39011931

RESUMEN

Scarce and expensive iridium oxide is still the cornerstone catalyst of polymer-electrolyte membrane electrolyzers for green hydrogen production because of its exceptional stability under industrially relevant oxygen evolution reaction (OER) conditions. Earth-abundant transition metal oxides used for this task, however, show poor long-term stability. We demonstrate here the use of nitrogen-doped cobalt oxide as an effective iridium substitute. The catalyst exhibits a low overpotential of 240 mV at 10 mA cm-2 and negligible activity decay after 1000 h of operation in an alkaline electrolyte. Incorporation of nitrogen dopants not only triggers the OER mechanism switched from the traditional adsorbate evolution route to the lattice oxygen oxidation route but also achieves oxygen nonbonding (ONB) states as electron donors, thereby preventing structural destabilization. In a practical anion-exchange membrane water electrolyzer, this catalyst at anode delivers a current density of 1000 mA cm-2 at 1.78 V and an electrical efficiency of 47.8 kW-hours per kilogram hydrogen.

2.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857407

RESUMEN

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

3.
Angew Chem Int Ed Engl ; 63(32): e202407613, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38736299

RESUMEN

Anion-exchange membrane fuel cells provide the possibility to use platinum group metal-free catalysts, but the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics and its source is still debated. Here, over nickel-tungsten (Ni-W) alloy catalysts, we show that the Ni : W ratio greatly governs the HOR performance in alkaline electrolyte. Experimental and theoretical studies unravel that alloying with W can tune the unpaired electrons in Ni, tailoring the potential of zero charge and the catalytic surface to favor hydroxyl adsorption (OHad). The OHad species coordinately interact with potassium (K+) ions, which break the K+ solvation sheath to leave free water molecules, yielding an improved connectivity of hydrogen-bond networks. Consequently, the optimal Ni17W3 alloy exhibits alkaline HOR activity superior to the state-of-the-art platinum on carbon (Pt/C) catalyst and operates steadily with negligible decay after 10,000 cycles. Our findings offer new understandings of alloyed HOR catalysts and will guide rational design of next-generation catalysts for fuel cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA