Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Org Lett ; 26(18): 3750-3755, 2024 May 10.
Article En | MEDLINE | ID: mdl-38667340

We report a series of ethenylene-bridged D-π-A BODIPY-xanthene hybrid dyes with precisely regulated absorption bands ranging from the far-red to the near-infrared region (NIR, 700-1000 nm) through rational molecular design. These dyes have excellent photoacoustic properties, and their biocompatibility can be significantly improved by facilely introducing water-soluble groups. In vivo two-channel multiplexed photoacoustic imaging demonstrated their high-resolution imaging capabilities, making them promising candidates for future NIR bioimaging applications.

2.
J Asian Nat Prod Res ; 26(1): 120-129, 2024 Jan.
Article En | MEDLINE | ID: mdl-38509697

Three new monoterpene phenol dimers, bisbakuchiols V-X (1-3), and two bakuchiol ethers (4 and 5), along with four known compounds (6-9) were isolated from the fruits of Psoralea corylifolia. Their structures were elucidated based on extensive spectral analysis. The absolute configurations of 1, 2, 4, and 5 were specified by quantum chemical calculations of ECD spectra.


Phenol , Psoralea , Phenol/analysis , Fruit/chemistry , Psoralea/chemistry , Monoterpenes , Molecular Structure , Phenols/chemistry
3.
Huan Jing Ke Xue ; 45(2): 844-853, 2024 Feb 08.
Article Zh | MEDLINE | ID: mdl-38471923

Pharmaceutical industry wastewater contains a large number of emerging pollutants such as antibiotics, antibiotic resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). The present biological water treatment processes cannot effectively remove these pollutants. Eventually, they are discharged into various water bodies or penetrate into soil with the effluent, causing environmental pollution and affecting human health. Therefore, exploring the pollution characteristics of antibiotics, ARBs, and ARGs in pharmaceutical wastewater and knowing the methods to detect and control antibiotic resistance pollution in wastewater are crucial for reducing the contamination of antibiotics and ARGs and assessing the ecological risks of antibiotic resistance. Aiming at the problem of antibiotic resistance pollution in a pharmaceutical wastewater treatment plant (PWWTPs), the pollution status of antibiotics, ARBs, and ARGs in pharmaceutical wastewater was discussed. Different assessment methods of antibiotic resistance in pharmaceutical wastewater were summarized. Finally, the wastewater treatment technologies commonly used to remove antibiotics and ARGs in PWWTPs were summarized in order to provide a theoretical basis for the ecological risk assessment and scientific control of antibiotics and ARGs in the environment.


Environmental Pollutants , Wastewater , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Pharmaceutical Preparations
4.
Genes (Basel) ; 15(2)2024 Feb 04.
Article En | MEDLINE | ID: mdl-38397195

To investigate the differential immunology in Ningxiang and Berkshire pigs and their F1 offspring (F1 offspring), physiological and biochemical indicators in the plasma and spleen were analyzed. Then, transcriptomic analysis of the spleen identified 1348, 408, and 207 differentially expressed genes (DEGs) in comparisons of Ningxiang vs. Berkshire, Berkshire vs. F1 offspring, and Ningxiang vs. F1 offspring, respectively. In Ningxiang vs. Berkshire pigs, the gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the DEGs included CD163, MARCO, CXCL14, CCL19, and PPBP, which are associated with immunity. GO and KEGG analyses were also conducted comparing F1 offspring and their parents. The DEGs, including BPIFB1, HAVCR2, CD163, DDX3X, CCR5, and ITGB3, were enriched in immune-related pathways. Protein-protein interaction (PPI) analysis indicated that the EGFR and ITGA2 genes were key hub genes. In conclusion, this study identifies significant immune DEGs in different pig breeds, providing data to support the exploration of breeding strategies for disease resistance in local and crossbred pig populations.


Spleen , Transcriptome , Swine/genetics , Animals , Transcriptome/genetics , Gene Expression Profiling , Genome
5.
Animals (Basel) ; 13(21)2023 Oct 25.
Article En | MEDLINE | ID: mdl-37958077

Adipose tissue composition contributes greatly to the quality and nutritional value of meat. Transcriptomic and lipidomic techniques were used to investigate the molecular mechanisms of the differences in fat deposition in Ningxiang pigs, Berkshires and F1 offspring. Transcriptomic analysis identified 680, 592, and 380 DEGs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. The lipidomic analysis screened 423, 252, and 50 SCLs in comparisons of Ningxiang pigs vs. Berkshires, Berkshires vs. F1 offspring, and Ningxiang pigs vs. F1 offspring. Lycine, serine, and the threonine metabolism pathway, fatty acid biosynthesis and metabolism-related pathways were significantly enriched in comparisons of Berkshires vs. Ningxiang pigs and Berkshires vs. F1 offspring. The DEGs (PHGDH, LOC110256000) and the SCLs (phosphatidylserines) may have a great impact on the glycine, serine, and the threonine metabolism pathway. Moreover, the DEGs (FASN, ACACA, CBR4, SCD, ELOV6, HACD2, CYP3A46, CYP2B22, GPX1, and GPX3) and the SCLs (palmitoleic acid, linoleic acid, arachidonic acid, and icosadienoic acid) play important roles in the fatty acid biosynthesis and metabolism of fatty acids. Thus, the difference in fat deposition among Ningxiang pig, Berkshires, and F1 offspring may be caused by differences in the expression patterns of key genes in multiple enriched KEGG pathways. This research revealed multiple lipids that are potentially available biological indicators and screened key genes that are potential targets for molecular design breeding. The research also explored the molecular mechanisms of the difference in fat deposition among Ningxiang pig, Berkshires, and F1 pigs, and provided an insight into selection for backfat thickness and the fat composition of adipose tissue for future breeding strategies.

6.
Animals (Basel) ; 13(20)2023 Oct 13.
Article En | MEDLINE | ID: mdl-37893916

Ningxiang pigs exhibit a diverse array of fatty acids, making them an intriguing model for exploring the genetic underpinnings of fatty acid metabolism. We conducted a genome-wide association study using a dataset comprising 50,697 single-nucleotide polymorphisms (SNPs) and samples from over 600 Ningxiang pigs. Our investigation yielded novel candidate genes linked to five saturated fatty acids (SFAs), four monounsaturated fatty acids (MUFAs), and five polyunsaturated fatty acids (PUFAs). Significant associations with SFAs, MUFAs, and PUFAs were found for 37, 21, and 16 SNPs, respectively. Notably, some SNPs have significant PVE, such as ALGA0047587, which can explain 89.85% variation in Arachidic acid (C20:0); H3GA0046208 and DRGA0016063 can explain a total of 76.76% variation in Elaidic Acid (C18:1n-9(t)), and the significant SNP ALGA0031262 of Arachidonic acid (C20:4n-6) can explain 31.76% of the variation. Several significant SNPs were positioned proximally to previously reported genes. In total, we identified 11 candidate genes (hnRNPU, CEPT1, ATP1B1, DPT, DKK1, PRKG1, EXT2, MEF2C, IL17RA, ITGA1 and ALOX5), six candidate genes (ALOX5AP, MEDAG, ISL1, RXRB, CRY1, and CDKAL1), and five candidate genes (NDUFA4L2, SLC16A7, OTUB1, EIF4E and ROBO2) associated with SFAs, MUFAs, and PUFAs, respectively. These findings hold great promise for advancing breeding strategies aimed at optimizing meat quality and enhancing lipid metabolism within the intramuscular fat (IMF) of Ningxiang pigs.

7.
Angew Chem Int Ed Engl ; 62(40): e202309208, 2023 Oct 02.
Article En | MEDLINE | ID: mdl-37590036

Open-shell radicals are promising near-infrared (NIR) photothermal agents (PTAs) owing to their easily accessible narrow band gaps, but their stabilization and functionalization remain challenging. Herein, highly stable π-extended nickel corrole radicals with [4n+1] π systems are synthesized and used to prepare NIR-absorbing PTAs for efficient phototheranostics. The light-harvesting ability of corrole radicals gradually improves as the number of fused benzene rings on ß-pyrrolic locations increases radially, with naphthalene- and anthracene-fused radicals and their one-electron oxidized [4n] π cations exhibiting panchromatic visible-to-NIR absorption. The extremely low doublet excited states of corrole radicals promote heat generation via nonradiative decay. By encapsulating naphthocorrole radicals with amphiphilic polymer, water-soluble nanoparticles Na-NPs are produced, which exhibit outstanding photostability and high photothermal conversion efficiency of 71.8 %. In vivo anti-tumor therapy results indicate that Na-NPs enable photoacoustic imaging of tumors and act as biocompatible PTAs for tumor ablation when triggered by 808 nm laser light. The "aromatic-ring fusion" strategy for energy-gap tuning of corrole radicals opens a new platform for developing robust NIR-absorbing photothermal materials.

8.
Adv Healthc Mater ; 12(29): e2301595, 2023 11.
Article En | MEDLINE | ID: mdl-37557912

Low-density lipoprotein (LDL), especially oxidative modified LDL (Ox-LDL), is the key risk factor for plaque accumulation and the development of cardiovascular disease. Herein, a highly specific Ox-LDL-triggered fluorogenic-colorimetric probe Pro-P1 is developed for visualizing the oxidation and aggregation progress of lipoproteins and plaque. A series of green fluorescent protein chromophores with modified donor-acceptor structures, containing carbazole as an electron donor and various substituents including pyridine-vinyl (P1), phenol-vinyl (P2), N, N-dimethylaniline-vinyl (P3), and thiophene-vinyl (P4), have been synthesized and evaluated. Emission spectroscopy and theoretical calculations of P1-P4 indicate that P1 shows enhanced green fluorescence (λem = 560 nm) by inhibiting its twisted intramolecular charge transfer in the presence of Ox-LDL. This feature allows the selection of P1 as a sensitive probe to directly visualize ferroptosis and Cu2+ -mediated LDL oxidative aggregation via in situ formation of fluorophore-bound Ox-LDL in living cells. The red-emissive probe Pro-P1 (λem = 660 nm) is prepared via borate protection of P1, which can be cleaved into P1 under high expression of HOCl and Ox-LDL condition at the lesion site, resulting in enhanced green emission. The plaque area and size with clear boundaries can be delineated by colorimetric fluorescence imaging and fluorescence lifetime imaging with precise differentiation.


Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/diagnostic imaging , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Lipoproteins/metabolism , Oxidation-Reduction
9.
Sci Rep ; 13(1): 11780, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37479871

The estimation of spacecraft pose is crucial in numerous space missions, including rendezvous and docking, debris removal, and on-orbit maintenance. Estimating the pose of space objects is significantly more challenging than that of objects on Earth, primarily due to the widely varying lighting conditions, low resolution, and limited amount of data available in space images. Our main proposal is a new deep learning neural network architecture, which can effectively extract orbiting spacecraft features from images captured by inverse synthetic aperture radar (ISAR) for pose estimation of non-cooperative on orbit spacecraft. Specifically, our model enhances spacecraft imaging by improving image contrast, reducing noise, and using transfer learning to mitigate data sparsity issues via a pre-trained model. To address sparse features in spacecraft imaging, we propose a dense residual U-Net network that employs dense residual block to reduce feature loss during downsampling. Additionally, we introduce a multi-head self-attention block to capture more global information and improve the model's accuracy. The resulting tightly interlinked architecture, named as SU-Net, delivers strong performance gains on pose estimation by spacecraft ISAR imaging. Experimental results show that we achieve the state of the art results, and the absolute error of our model is 0.128[Formula: see text] to 0.4491[Formula: see text], the mean error is about 0.282[Formula: see text], and the standard deviation is about 0.065[Formula: see text]. The code are released at https://github.com/Tombs98/SU-Net .

10.
Genes (Basel) ; 14(7)2023 06 21.
Article En | MEDLINE | ID: mdl-37510213

Ningxiang pig is a breed renowned for its exceptional meat quality, but it possesses suboptimal carcass traits. To elucidate the genetic architecture of meat quality and carcass traits in Ningxiang pigs, we assessed heritability and executed a genome-wide association study (GWAS) concerning carcass length, backfat thickness, meat color parameters (L.LD, a.LD, b.LD), and pH at two postmortem intervals (45 min and 24 h) within a Ningxiang pig population. Heritability estimates ranged from moderate to high (0.30~0.80) for carcass traits and from low to high (0.11~0.48) for meat quality traits. We identified 21 significant SNPs, the majority of which were situated within previously documented QTL regions. Furthermore, the GRM4 gene emerged as a pleiotropic gene that correlated with carcass length and backfat thickness. The ADGRF1, FKBP5, and PRIM2 genes were associated with carcass length, while the NIPBL gene was linked to backfat thickness. These genes hold the potential for use in selective breeding programs targeting carcass traits in Ningxiang pigs.


Genome-Wide Association Study , Meat , Swine/genetics , Animals , Genotype , Phenotype , Meat/analysis , Genes, cdc
11.
Huan Jing Ke Xue ; 44(6): 3439-3449, 2023 Jun 08.
Article Zh | MEDLINE | ID: mdl-37309961

Aiming to address the problem of soil environmental pollution caused by the large-scale use of plastic film in agricultural production in China, field experiments were carried out by applying degradable plastic film. Pumpkin was used as the research material to explore the effects of black common plastic film (CK), white degradation plastic film (WDF), black degradation plastic film (BDF), and black CO2-based degradable plastic film (C-DF) on soil physicochemical properties, root growth and yield, and soil quality. The results showed that the soil water content and temperature of the three degradable plastic films were lower than those of ordinary plastic films to different degrees; there was no significant difference in soil organic matter content among the treatments. The soil available potassium content of the C-DF treatment was lower than that of CK, and WDF and BDF had no significant effect. Compared with those in CK and WDF, soil total nitrogen and available nitrogen contents in the BDF and C-DF treatments were lower, and the difference between treatments reached a significant level. Compared with that of CK, the catalase activities of the three types of degradation membranes were significantly increased by 2.9%-6.8%, and the sucrase was significantly decreased by 33.3%-38.4%. Compared with that in CK, the soil cellulase activity in the BDF treatment was significantly increased by 63.8%, whereas WDF and C-DF had no significant effects. The three types of degradable film treatments could promote the growth of underground roots, and the growth vigor was obviously enhanced. The yield of pumpkin treated with BDF and C-DF was close to that of CK, and the yield of pumpkin treated with BDF was significantly lower than that of CK by 11.4%. The experimental results showed that the effects of the BDF and C-DF treatments on soil quality and yield were comparable to those of CK. According to the results, two types of black degradable plastic film can effectively replace ordinary plastic film in the high-temperature production season.


Agriculture , Soil , China , Nitrogen , Plastics
12.
Environ Res ; 229: 115986, 2023 07 15.
Article En | MEDLINE | ID: mdl-37100367

Organic cosolvents are commonly used to increase the dissolution of poorly water-soluble organic pollutants into aqueous solutions during environmental remediation. In this study, the influences of five organic cosolvents on hexabromobenzene (HBB) degradation catalyzed by one typical reactive material montmorillonite-templated subnanoscale zero-valent iron (CZVI) were investigated. The results demonstrated that all cosolvents promoted HBB degradation but the degree of promotion was different for different cosolvents, which was associated with inconsistent solvent viscosities, dielectric constant properties, and the extent of interactions between cosolvents with CZVI. Meanwhile, HBB degradation was highly dependent on the volume ratio of cosolvent to water, which increased in the range of 10%-25% but persistently decreased in the range of more than 25%. This might be due to the fact that the cosolvents increased HBB dissolution at low concentrations but reduced the protons supplied by water and the contact between HBB with CZVI at high concentrations. In addition, the freshly-prepared CZVI had higher reactivity to HBB than the freeze-dried CZVI in all water-cosolvent solutions, probably because freeze-drying reduced the interlayer space of CZVI and thus the contact probability between HBB and active reaction sites. Finally, the CZVI-catalyzed HBB degradation mechanism was proposed as the electron transfer between zero-valent iron and HBB, which led to the formation of four debromination products. Overall, this study provides helpful information for the practical application of CZVI in the remediation of persistent organic pollutants in the environment.


Water Pollutants, Chemical , Water Pollutants , Iron , Bentonite , Bromobenzenes , Water
13.
Foods ; 12(5)2023 Mar 02.
Article En | MEDLINE | ID: mdl-36900576

With the aim to study the flavor characteristics of Ningxiang pigs (NX), Duroc (DC) pigs, and their crosses (Duroc × Ningxiang, DN), electronic nose and gas chromatography-mass spectrometry analysis were used to detect the volatile flavor substances in NX, DC, and DN (n = 34 pigs per population). A total of 120 volatile substances were detected in the three populations, of which 18 substances were common. Aldehydes were the main volatile substances in the three populations. Further analysis revealed that tetradecanal, 2-undecenal, and nonanal were the main aldehyde substances in the three kinds of pork, and the relative content of benzaldehyde in the three populations had significant differences. The flavor substances of DN were similar to that of NX and showed certain heterosis in flavor substances. These results provide a theoretical basis for the study of flavor substances of China local pig breeds and new ideas for pig breeding.

14.
Inorg Chem ; 62(12): 4747-4751, 2023 Mar 27.
Article En | MEDLINE | ID: mdl-36920034

1ReH•Cl, a highly robust and antiaromatic rhenium(I) complex of triarylrosarin, is synthesized. The 1H NMR spectrum of 1ReH•Cl shows upfield-shifted pyrrole protons and highly downfield-shifted inner protons that confirm its antiaromatic nature, with density functional theory calculations strongly supporting this interpretation. Antiaromatic 1ReH•Cl absorbs from the UV to near-IR region of the optical spectrum; cyclic voltammetry, thin-layer UV-vis spectroelectrochemistry, and spin-density distributions clearly reveal that the rosarin backbone of 1ReH•Cl undergoes redox chemistry. The X-ray structure of 1ReH•Cl shows a fully coordinated and protonated inner cavity that effectively prevents proton-coupled electron transfer when treated with an acid. A remarkably negative NICS(0) value, clockwise anisotropy of the induced current density ring current, and the aromatic shielded inner cavity in the 2D ICSS(0) map reveal that the T1 state of 1ReH•Cl is aromatic based on Baird's rule.

15.
Sci Total Environ ; 866: 161379, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-36621477

A novel, inexpensive and eco-friendly aminated lignin/geopolymer supported with Fe nanoparticles (Fe@N-L-GM) composite was successfully synthesized using kaolin and lignin as the major precursors. The prepared Fe@N-L-GM had larger specific surface area, rich oxygen-containing and nitrogen-containing functional groups, greater electron transfer ability and interconnective porous structure. The Fe@N-L-GM could be employed as the adsorbent of Cr(VI) and the activator of potassium peroxymonosulfate (PMS) for treatment of Cr(VI) and naphthalene (NAP) in wastewater. The adsorption and degradation results indicated that the maximum adsorption capacity of Cr(VI) could reach 65.83 mg g-1, whereas the maximum NAP degradation efficiency could reach 97.81 %. The adsorbed Cr(VI) was mostly converted to the low toxic Cr(III) through the reduction of electron donors such as Fe(II), amino and hydroxyl groups. The quenching experiment results confirmed that ·OH might be the crucial ROSs in mediating NAP degradation. In the simultaneous removal experiment of Cr(VI) and NAP, the Cr(VI) removal rate was significantly improved in the presence of NAP, while phenol as the degradation intermediate of NAP might be the main substance for promoting the reduction of Cr(VI). This work provided the theoretical foundation and a new type of material for the simultaneous removal of heavy metal and persistent organic pollutants (POPs).

16.
Foods ; 12(2)2023 Jan 08.
Article En | MEDLINE | ID: mdl-36673389

This study attempts to explore the suitable conditions for the detection of volatile flavor compounds (VFCs) in Ningxiang pork by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Ningxiang pigs were harvested from a slaughterhouse and a longissimus dorsi sample was collected from each animal. The VFCs of Ningxiang pork can be strongly impacted by the detection conditions (columns, weight of meat samples, heat treatment time, equilibrium conditions, and extraction conditions) that need to be optimized. Our results also provided the optimal test conditions: weighing 5 g of meat samples, grinding for 30 s in a homogenizer, heat treatment at 100 °C for 30 min, equilibration at 70 °C for 30 min, and extraction at 100 °C for 50 min. Furthermore, the feasibility and representativeness of the test method were confirmed based on principal component analysis and a comparison of the three pork VFCs. These findings offer researchers a unified and efficient pretreatment strategy to research pork VFCs.

17.
Neurochem Res ; 48(3): 791-803, 2023 Mar.
Article En | MEDLINE | ID: mdl-36335177

Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction closely associated with mortality in the acute phase of sepsis. Abnormal neurotransmitters release, such as glutamate, plays a crucial role in the pathological mechanism of SAE. Munc18-1 is a key protein regulating neurotransmission. However, whether Munc18-1 plays a role in SAE by regulating glutamate transmission is still unclear. In this study, a septic rat model was established by the cecal ligation and perforation. We found an increase in the content of glutamate in the hippocampus of septic rat, the number of synaptic vesicles in the synaptic active area and the expression of the glutamate receptor NMDAR1. Meanwhile, it was found that the expressions of Munc18-1, Syntaxin1A and Synaptophysin increased, which are involved in neurotransmission. The expression levels of Syntaxin1A and Synaptophysin in hippocampus of septic rats decreased after interference using Munc18-1siRNA. We observed a decrease in the content of glutamate in the hippocampus of septic rats, the number of synaptic vesicles in the synaptic activity area and the expression of NMDAR1. Interestingly, it was also found that the down-regulation of Munc18-1 improved the vital signs of septic rats. This study shows that CLP induced the increased levels of glutamate in rat hippocampus, and Munc18-1 may participate in the process of hippocampal injury in septic rats by affecting the levels of glutamate via regulating Syntaxin1A and Synaptophysin. Munc18-1 may serve as a potential target for SAE therapy.


Sepsis-Associated Encephalopathy , Sepsis , Rats , Animals , Synaptophysin/metabolism , Glutamic Acid/metabolism , Sepsis-Associated Encephalopathy/metabolism , Sepsis/metabolism , Hippocampus/metabolism
18.
Physiol Meas ; 43(11)2022 12 01.
Article En | MEDLINE | ID: mdl-36374012

Objective.The oscillometric blood pressure (BP) measurement technique estimates BPs from analyzing the oscillometric cuff pressure waveform (oscillogram) envelope. The oscillogram envelope maximum is associated with physiological changes and influences BP measurement accuracy. We aim to quantitatively investigate the effect of BP and aging on the changes of oscillogram envelope maximum.Approach.Four hundred and sixty-two subjects (214 female, 248 male) were recruited. The cuff pressure was digitally recorded during linear cuff deflation to derive oscillogram envelopes and their maximums. Moderation analysis was performed to investigate whether the relationship between BP and envelope maximum was moderated by age. Subjects were divided into five age categories and three BP groups. The envelope maximums were compared between different BP and age categories to qualify their changes with increased BP and aging.Main results.Age has a significant moderating effect on the relationship between BP and envelope maximum (P < 0.05). The oscillogram envelope maximums increased significantly with increased BPs (P < 0.05 between each BP groups) and aging (P < 0.05 for > 60 years old groups in comparison with younger groups).Significance.This study experientially and theoretically concluded the BPs and aging are two important factors that influence the maximum value of the oscillogram envelope.


Aging , Blood Pressure Determination , Male , Female , Humans , Middle Aged , Blood Pressure/physiology , Blood Pressure Determination/methods , Oscillometry/methods , Data Collection
19.
Pathol Res Pract ; 239: 154142, 2022 Nov.
Article En | MEDLINE | ID: mdl-36242967

Excessive inflammatory response is a prominent pathogenic hallmark of acute lung injury (ALI). Long noncoding RNA (lncRNA) has been recently reported to play a key role in the pathophysiology of many inflammatory disorders, including ALI. Herein, we attempted to explore the role and underlying mechanism of lncRNA MEG3 in the inflammation in ALI. Firstly, an ALI mouse model was generated via intra-tracheal instillation of lipopolysaccharide (LPS), and then, the impact of lncRNA MEG3 on lung tissue damage, pulmonary edema, lung microvascular permeability and pulmonary inflammatory response, as well as the ALI mice survival rate was investigated. LncRNA MEG3 was upregulated in lung tissues, and knockdown of lncRNA MEG3 protected mice from LPS-induced ALI, with significantly reduced lung pathological changes, decreased lung wet/dry (W/D) ratio and lung microvascular permeability, attenuated inflammatory response, along with increased ALI mice survival. Moreover, lncRNA MEG3 could sponge miR-93, negatively regulated its expression, and lncRNA MEG3 overexpression liberated the suppression of TLR4 expression caused by miR-93. Further, functional studies demonstrated that the protective effects of lncRNA MEG3 on excessive inflammatory response may be related to miR-93-mediated modulation of TLR4/MyD88/NF-κB pathway. Collectively, lncRNA MEG3 inhibition blocked TLR4/MyD88/NF-κB pathway to repress the progression of sepsis-induced lung injury via upregulating miR-93, implying that lncRNA MEG3 might be a viable therapeutic target for ALI.


Acute Lung Injury , MicroRNAs , RNA, Long Noncoding , Sepsis , Animals , Mice , Acute Lung Injury/genetics , Acute Lung Injury/prevention & control , Acute Lung Injury/chemically induced , Adaptor Proteins, Signal Transducing/metabolism , Lipopolysaccharides , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Myeloid Differentiation Factor 88/therapeutic use , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Sepsis/complications , Sepsis/genetics , Signal Transduction , Toll-Like Receptor 4/metabolism
20.
Front Immunol ; 13: 1014881, 2022.
Article En | MEDLINE | ID: mdl-36159803

3-Indolepropionic acid (IPA) is a tryptophan metabolite that has anti-inflammatory properties. The present study try to investigate the phylactic effects of IPA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that IPA pretreatment ameliorated the DSS-induced decrease in growth performance, and intestinal damage and enhanced immunity in mice. RNA-seq analysis of mouse colon samples revealed that the differentially expressed genes (DEGs) were mainly enriched in immune-related pathways. 16S rRNA sequencing showed that IPA pretreatment ameliorated DSS-induced colonic microbiota dysbiosis. Moreover, the expression levels of gut immune genes were positively correlated with the relative abundance of several probiotics, such as Alloprevotella and Catenibacterium. In conclusion, IPA alleviates DSS-induced acute colitis in mice by regulating inflammatory cytokines, balancing the colonic microbiota and modulating the expression of genes related to inflammation, which would also provide a theoretical basis for IPA as a strategy to improve intestinal health.


Colitis , Gastrointestinal Microbiome , Animals , Anti-Inflammatory Agents/pharmacology , Colitis/chemically induced , Colitis/genetics , Colitis/therapy , Cytokines/metabolism , Dextran Sulfate/adverse effects , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Transcriptome , Tryptophan/pharmacology
...