Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1333037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481998

RESUMEN

Introduction: Patients with relapsed/refractory (r/r) acute T-lymphoblastic leukemia (T-ALL) have a poor prognosis. We developed donor CD7 chimeric antigen receptor T (CAR-T) cells to salvage r/r T-ALL patients and obtained encouraging results. Patients who had not received allogeneic (allo-) hematopoietic stem cell transplantation (HSCT) before CAR-T therapy would develop pancytopenia and immunodeficiency for a long period after CD7 CAR-T therapy; therefore, allo-HSCT is needed in these patients. Here, we report two pediatric r/r T-ALL patients who received donor CD7 CAR-T bridging to allo-HSCT with leukemia-free survival (LFS) and sustained negative minimal residual disease for >2 years. Case presentation: Patient 1 was a 10-year-old boy who visited our hospital because of a T-ALL relapse with multiple lymphadenopathies without discomfort. The patient did not achieve remission after one course of induction chemotherapy. The patient then received donor (his father) CD7 CAR-T cells and achieved complete remission (CR). Thirty days after the first CAR-T cell infusion, he received allo-HSCT, and his father was also the donor. His LFS was >3 years. Patient 2 was an 8-year-old boy who was admitted to our hospital with relapsed T-ALL with fever, cough, and mild dyspnea. He did not achieve remission after one course of induction chemotherapy; therefore, he received donor (his father) CD7 CAR-T cells and achieved CR. Twenty-six days after CAR-T cell infusion, the patient received allo-HSCT, with his father as the donor. He has survived for >2 years free of leukemia. At the last follow up, both patients were alive and presented a good quality of life. Conclusion: The long-term survival of these two patients supports the use of CD7 CAR-T therapy bridging to allo-HSCT as an effective and safe treatment with the capacity to make r/r T-ALL a curable disease, similar to r/r acute B-lymphoblastic leukemia.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Masculino , Humanos , Niño , Calidad de Vida , Trasplante de Células Madre Hematopoyéticas/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Enfermedad Aguda , Linfocitos T
2.
Opt Lett ; 47(19): 5016-5019, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181175

RESUMEN

An ytterbium-doped, single-stage, double-pass nonlinear fiber amplification system was fabricated for amplifying an 1100-nm mode-locking fiber laser. Pre-chirp managed amplification (PCMA) was applied in realizing the nonlinear amplification process with an all-polarization-maintaining (PM) fiber construction. The system can deliver 19.8-nJ, 58.7-fs, 24.4-MHz amplified signal pulses with a 10-dB spectral range spanning from 1049 nm to 1130 nm. Further experimental investigations were conducted in exploring the dynamics of the double-pass nonlinear amplification process. This compact 1100-nm ultrafast fiber laser can be implemented for multi-photon microscopy (MPM) with deep penetration depth.

3.
Opt Lett ; 47(1): 5-8, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34951868

RESUMEN

An ytterbium-doped stretched-pulse mode-locked fiber oscillator was fabricated by applying a nonlinear amplifier loop mirror (NALM). The fiber cavity was built using a large-mode area (LMA) polarization-maintaining (PM) double-cladding (DC) fiber. The central wavelength of the generated 24.7 MHz laser can be modified from 1034 to 1104 nm by tuning the intra-cavity loss. The output power of this laser with a wavelength of 1104 nm at the transmission and reflection ports is 7.61 and 0.33 mW, respectively. The corresponding compressed pulse durations are 192 and 187 fs, which are 1.54 and 1.02 times the Fourier-transform-limited pulse duration, respectively.

4.
Nanomaterials (Basel) ; 11(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34685046

RESUMEN

In the current study, layered metallic vanadium disulfide (VS2) is fabricated by a liquid-phase exfoliation method, and its microstructures as well as optical characteristics are investigated. Based on first-principles calculations, the band structure and density of the states of both bulk T-VS2 and monolayer H-VS2 are illustrated, showing the metallic behavior with a zero band gap. By using VS2 as the saturable absorber in a doubly Q-switched Tm:YAP laser with an EOM, the Q-switching laser pulses at 2 µm with 22 ns and 200 Hz are generated, corresponding to the single pulse energy of 755 µJ and the peak power of 34.3 kW. The coupled rate equations of the doubly Q-switched laser are given, and the numerical simulations agree with the experimental results. The results indicate that VS2 is a promising nanomaterial due to its nonlinear optical property. The doubly Q-switched laser demonstrates a high level of performance in reducing pulse width and enhancing pulse peak power.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA