Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.196
1.
Front Mol Biosci ; 11: 1379124, 2024.
Article En | MEDLINE | ID: mdl-38712344

Background: The management of primary hypothyroidism demands a comprehensive approach that encompasses both the implications of autoimmune thyroid disease and the distinct effects posed by obesity and metabolic irregularities. Despite its clinical importance, the interplay between obesity and hypothyroidism, especially in the context of metabolic perspectives, is insufficiently explored in existing research. This study endeavors to classify hypothyroidism by considering the presence of autoimmune thyroid disease and to examine its correlation with various metabolic obesity phenotypes. Method: This research was conducted by analyzing data from 1,170 individuals enrolled in the Thyroid Disease Database of Shandong Provincial Hospital. We assessed four distinct metabolic health statuses among the participants: Metabolically Healthy No Obese Metabolically Healthy Obese Metabolically Unhealthy No Obese and Metabolically Unhealthy Obese Utilizing logistic regression, we investigated the association between various metabolic obesity phenotypes and hypothyroidism. Results: The study revealed a significant correlation between the Metabolically Unhealthy Obese (MUO) phenotype and hypothyroidism, particularly among women who do not have thyroid autoimmunity. Notably, the Metabolically Unhealthy No Obese (MUNO) phenotype showed a significant association with hypothyroidism in individuals with thyroid autoimmunity, with a pronounced prevalence in women. Furthermore, elevated levels of triglycerides and blood glucose were found to be significantly associated with hypothyroidism in men with thyroid autoimmunity and in women without thyroid autoimmunity. Conclusion: Effective treatment of hypothyroidism requires a thorough understanding of the process of thyroid autoimmune development. In patients without concurrent thyroid autoimmunity, there is a notable correlation between obesity and metabolic issues with reduced thyroid function. Conversely, for patients with thyroid autoimmunity, a focused approach on managing metabolic abnormalities, especially triglyceride levels, is crucial.

2.
Cell Metab ; 36(5): 947-968, 2024 May 07.
Article En | MEDLINE | ID: mdl-38718757

Insulin resistance (IR) is a major pathogenic factor in the progression of MASLD. In the liver, insulin suppresses gluconeogenesis and enhances de novo lipogenesis (DNL). During IR, there is a defect in insulin-mediated suppression of gluconeogenesis, but an unrestrained increase in hepatic lipogenesis persists. The mechanism of increased hepatic steatosis in IR is unclear and remains controversial. The key discrepancy is whether insulin retains its ability to directly regulate hepatic lipogenesis. Blocking insulin/IRS/AKT signaling reduces liver lipid deposition in IR, suggesting insulin can still regulate lipid metabolism; hepatic glucose metabolism that bypasses insulin's action may contribute to lipogenesis; and due to peripheral IR, other tissues are likely to impact liver lipid deposition. We here review the current understanding of insulin's action in governing different aspects of hepatic lipid metabolism under normal and IR states, with the purpose of highlighting the essential issues that remain unsettled.


Fatty Liver , Insulin Resistance , Insulin , Liver , Signal Transduction , Humans , Insulin/metabolism , Liver/metabolism , Fatty Liver/metabolism , Animals , Lipid Metabolism , Lipogenesis
3.
Materials (Basel) ; 17(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38730786

Developing argyrodite-type, chlorine-rich, sodium-ion, solid-state electrolytes with high conductivity is a long-term challenge that is crucial for the advancement of all-solid-state batteries (ASSBs). In this study, chlorine-rich, argyrodite-type Na6-xPS5-xCl1+x solid solutions were successfully developed with a solid solution formation range of 0 ≤ x ≤ 0.5. Na5.5PS4.5Cl1.5 (x = 0.5), displaying a highest ionic conductivity of 1.2 × 10-3 S/cm at 25 °C, which is more than a hundred times higher than that of Na6PS5Cl. Cyclic voltammetry and electrochemical impedance spectroscopy results demonstrated that the rich chlorine significantly enhanced the ionic conductivity and electrochemical stability, in addition to causing a reduction in activation energy. The Na5.5PS4.5Cl1.5 composite also showed the characteristics of a pure ionic conductor without electronic conductivity. Finally, the viability of Na5.5PS4.5Cl1.5 as a sodium electrolyte for all-solid-state sodium batteries was checked in a lab-scale ASSB, showing stable battery performance. This study not only demonstrates new composites of sodium-ionic, solid-state electrolytes with relatively high conductivity but also provides an anion-modulation strategy to enhance the ionic conductivity of argyrodite-type sodium solid-state ionic conductors.

5.
Zhongguo Zhen Jiu ; 44(4): 400-404, 2024 Apr 12.
Article En, Zh | MEDLINE | ID: mdl-38621726

OBJECTIVES: To observe the effect of penetrating-moxibustion therapy on postpartum uterine involution. METHODS: Eighty puerpera were randomized into an observation group and a control group, 40 cases in each one. In the control group, oxytocin injection was administered by intravenous drip, 20 U each time, once daily. In the observation group, on the base of the treatment as the control group, the penetrating-moxibustion therapy was used at Shenque (GV 8), Qihai (CV 6) and Guanyuan (CV 4), 30 min to 40 min each time, twice a day. The intervention of each group started from the first day after childbirth and lasted 3 days. The uterine volume before and after treatment, and in 42 days of postpartum, the height decrease of the fundus of the uterus, the score of visual analogue scale (VAS) for uterine contraction, the volume of lochia rubra in 1 to 3 days of treatment, and lochia duration were compared between the two groups; and the clinical effect was evaluated. RESULTS: The uterine volume in the observation group was smaller than that of the control group after treatment (P<0.01). In 1 to 3 days of treatment, the height decrease of the fundus of the uterus in the observation group was larger (P<0.01), VAS scores of uterine contraction were lower (P<0.05, P<0.01), the lochia rubra volume was less (P<0.01) than those in the control group. The duration of lochia rubra and lochia was shorter (P<0.01) in the observation group when compared with that of the control group. The favorable rate of uterine involution in the observation group was 95.0% (38/40), higher than that of the control group (75.0%, 30/40, P<0.05). CONCLUSIONS: Penetrating-moxibustion therapy accelerates the recovery of the uterine volume, relieves uterine contraction, shortens the duration of lochia, reduces the lochia volume and promotes the postpartum uterine involution.


Body Fluids , Moxibustion , Pregnancy , Female , Humans , Postpartum Period , Uterus , Delivery, Obstetric , Acupuncture Points
6.
Endocr Connect ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38657664

OBJECTIVE: Uridine might be a common link between pathological pathways in diabetes and cardiovascular diseases. This study aimed to investigate the predictive value of plasma uridine for type 2 diabetes and type 2 diabetes with atherosclerosis. METHODS: Individuals with type 2 diabetes (T2D) and healthy controls (n=218) were randomly enrolled in a cross-sectional study. Patients with T2D were divided into two groups based on carotid ultrasound: patients with carotid atherosclerosis (CA) (group DCA), and patients without CA (group D). Plasma uridine was determined using high-performance liquid chromatography-tandem mass spectrometry. Correlation and logistic regression analyses were used to analyze the results. RESULTS: Fasting and postprandial uridine were significantly increased in patients with T2D compared with healthy individuals. Logistic regression suggested that fasting and postprandial uridine were independent risk factors for T2D. The receiver operating characteristic (ROC) curve showed that fasting uridine had a predictive value on T2D (95% CI,0.686-0.863, sensitivity 74.3%, specificity 71.8%). Fasting uridine was positively correlated with LDL-c, FBG, and PBG, and negatively correlated with CP-0h and HOMA-IS. The change in postprandial uridine from fasting baseline (Δ uridine) was smaller in T2D patients with CA compared with those without (0.80(0.04-2.46) vs. 2.01(0.49-3.15), P=0.010). Δuridine was also associated with T2D with CA and negatively correlated with BMI, CP-0h, and HOMA-IR. CONCLUSIONS: Fasting uridine has potential as a predictor of diabetes. Δuridine is closely associated with carotid atherosclerosis in patients with T2D.

7.
BMC Oral Health ; 24(1): 470, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637781

BACKGROUND: Primary cutaneous anaplastic large-cell lymphoma (PC-ALCL) is a rare T-cell lymphoma belonging to the CD30 + T-cell lymphoproliferative disorders. The case of PC-ALCL in the temporal region is exceedingly rare. Herein, we report a case of PC-ALCL involving the temporal region mimicking infratemporal space infection. CASE PRESENTATION: A 78-year-old woman presented to maxillofacial surgery service with a 6-month history of swelling and pain in the left side of her face. Laboratory investigations found an elevated C-reactive protein (CRP). Imaging findings showed enlarged lymph nodes and extensive thickening of subcutaneous tissue of the left temples. Based on these findings, the infratemporal space infection was suspected initially. The patient underwent incision and drainage, and we unexpectedly found no pus in the lesion area. Incisional biopsy showed necrosis and extensive involvement of the left temples by a diffuse infiltrate containing large, atypical cells. The tumor cells were positive for CD30, CD3, Ki67. They were negative for ALK (SP8), CD5, CD8, CD20 and PAX5. After considering these findings, a diagnosis of PC-ALCL was rendered. The patient was admitted to the lymphoma department for systemic chemotherapy and no relapse occurred during a follow-up period of six months. CONCLUSIONS: This report suggests that if there are suspicious intraoperative manifestations, carrying out a biopsy simultaneously, using Hematoxylin and eosin (HE) staining, and a comprehensive Immunohistochemistry (IHC) panel are essential to diagnosing PC-ALCL to prevent misdiagnosis.


Lymphoma, Large-Cell, Anaplastic , Skin Neoplasms , Humans , Female , Aged , Lymphoma, Large-Cell, Anaplastic/diagnosis , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Skin Neoplasms/diagnosis , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Neoplasm Recurrence, Local
8.
Front Neurosci ; 18: 1375908, 2024.
Article En | MEDLINE | ID: mdl-38576869

Neurovascular coupling (NVC) is an important mechanism to ensure adequate blood supply to active neurons in the brain. NVC damage can lead to chronic impairment of neuronal function. Diabetes is characterized by high blood sugar and is considered an important risk factor for cognitive impairment. In this review, we provide fMRI evidence of NVC damage in diabetic patients with cognitive decline. Combined with the exploration of the major mechanisms and signaling pathways of NVC, we discuss the effects of chronic hyperglycemia on the cellular structure of NVC signaling, including key receptors, ion channels, and intercellular connections. Studying these diabetes-related changes in cell structure will help us understand the underlying causes behind diabetes-induced NVC damage and early cognitive decline, ultimately helping to identify the most effective drug targets for treatment.

9.
Endocr Pract ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38679386

BACKGROUND: The association between obesity, metabolic dysregulation, and the aggressive pathological traits of papillary thyroid carcinoma (PTC) continues to be a contentious issue. To date, no investigations have examined the impact of metabolic status on the malignant pathological features of PTC in relation to obesity. METHODS: This research involved 855 adult PTC patients from Shandong Provincial Hospital, classified into four groups based on metabolic and obesity status: metabolically healthy nonobese (MHNO), metabolically unhealthy nonobese (MUNO), metabolically healthy obese (MHO), and metabolically unhealthy obese (MUO). We employed logistic regression to investigate the relationship between these metabolic obesity phenotypes and PTC's pathological characteristics. Mediation analysis was also performed to determine metabolic abnormalities' mediating role in the nexus between obesity and these characteristics. RESULTS: Relative to MHNO individuals, the MUO group was significantly associated with an elevated risk of larger tumor sizes and a greater number of tumor foci in PTC. Mediation analysis indicated that obesity directly influences tumor size, whereas its effect on tumor multifocality is mediated through metabolic dysfunctions. Specifically, HDL-C levels were notably associated with tumor multifocality within obese subjects, serving as a mediator in obesity's impact on this trait. CONCLUSION: The concurrent presence of obesity and metabolic dysregulation is often connected to more aggressive pathological features in PTC. The mediation analysis suggests obesity directly affects tumor size and indirectly influences tumor multifocality via low HDL-C levels.

10.
Mol Ther Oncol ; 32(1): 200759, 2024 Mar 21.
Article En | MEDLINE | ID: mdl-38596298

The balance between T helper 1 (Th1) and T helper 2 (Th2) has a critical function in determining intratumoral immune response and anti-PD-1 immunotherapy. The level of maternal embryonic leucine zipper kinase (MELK) is reported to correlate with infiltration of immune cells in cancers, but the underlying molecular mechanism is not clarified. In the present study, we aimed to elucidate the potential function of MELK in cervical cancer. We found that MELK was upregulated and played an oncogenic role in cervical cancer. MELK overexpression shifted Th1/Th2 balance toward Th2 predisposition in mouse cervical tumors in vivo and naive T cells from human PBMCs in vitro, whereas MELK knockdown exhibited opposite effects. MELK overexpression activated NF-κB signaling and promoted IL-6 secretion by cervical cancer cells. Depletion of IL-6 by neutralization antibodies abrogated the influence of MELK on Th1/Th2 balance. In addition, MELK modulated the antitumor activity of cytotoxic CD8+ T cells in cervical tumors, but depletion of Th2 cells by IL-4 neutralization abrogated this effect. Finally, MELK overexpression conferred tolerance to PD-1 blockade in cervical tumors, whereas targeting MELK by OTSSP167 significantly enhanced PD-1 blockade efficiency. Our data elucidated a novel role of MELK in regulating Th1/Th2 balance and anti-PD-1 immunotherapy in cervical cancer.

11.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570876

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Autistic Disorder , Animals , Mice , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Autistic Disorder/genetics , Autistic Disorder/metabolism , Hypothalamus/metabolism , Microfilament Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Mitogen-Activated Protein Kinase 14/metabolism
12.
JBMR Plus ; 8(5): ziae034, 2024 May.
Article En | MEDLINE | ID: mdl-38586475

Mutations in PLEKHM1 cause osteopetrosis in humans and rats. The germline and osteoclast conditional deletions of Plekhm1 gene in mice lead to defective osteoclast bone resorption and increased trabecular bone mass without overt abnormalities in other organs. As an adaptor protein, pleckstrin homology and RUN domain containing M1 (PLEKHM1) interacts with the key lysosome regulator small GTPase RAB7 via its C-terminal RUBICON homologous (RH) domain. In this study, we have conducted a structural-functional study of the PLEKHM1 RH domain and RAB7 interaction in osteoclasts in vitro. The single mutations of the key residues in the Plekhm1 RH predicted from the crystal structure of the RUBICON RH domain and RAB7 interface failed to disrupt the Plekhm1-Rab7 binding, lysosome trafficking, and bone resorption. The compound alanine mutations at Y949-R954 and L1011-I1018 regions decreased Plekhm1 protein stability and Rab7-binding, respectively, thereby attenuated lysosome trafficking and bone resorption in osteoclasts. In contrast, the compound alanine mutations at R1060-Q1068 region were dispensable for Rab7-binding and Plekhm1 function in osteoclasts. These results indicate that the regions spanning Y949-R954 and L1011-I1018 of Plekhm1 RH domain are functionally important for Plekhm1 in osteoclasts and offer the therapeutic targets for blocking bone resorption in treatment of osteoporosis and other metabolic bone diseases.

13.
J Mater Chem B ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687592

Advanced colorectal cancer (CRC) with peritoneal metastasis (PM) is a highly aggressive malignancy with poor prognosis. Systematic chemotherapy and local treatments are the primary therapeutic approaches. However, systemic chemotherapy is limited by low accumulation of drugs at the tumor site and systemic toxicity. Local treatments include cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). However, CRS faces challenges related to incomplete tumor resection, while HIPEC is restricted by the uneven distribution of drugs and potential complications. Herein, a thermosensitive methyl-cellulose-based injectable hydrogel carrying oxaliplatin (OXA) was synthesized to improve this situation. Specifically, methyl cellulose (MC) coagulated into a hydrogel, and OXA was loaded into the MC hydrogel to construct the OXA-MC hydrogel. We explored the OXA-MC hydrogel for the treatment of PM in CRC. The results demonstrated that the OXA-MC hydrogel had favorable biocompatibility and thermo-sensitivity and could act as a local slow-release drug carrier. Moreover, in a CT-26 tumor-bearing model, it showed a remarkable anti-tumor effect by inhibiting proliferation and promoting apoptosis. Additionally, transcriptome analysis indicated that the OXA-MC hydrogel might be involved in the regulation of the PI3K-AKT signaling pathway. In summary, we successfully prepared the OXA-MC hydrogel and provided a valid approach in the treatment of PM in CRC, which lays a foundation for other PM treatments.

14.
Front Physiol ; 15: 1360891, 2024.
Article En | MEDLINE | ID: mdl-38487261

Uridine is a pyrimidine nucleoside found in plasma and cerebrospinal fluid with a concentration higher than the other nucleosides. As a simple metabolite, uridine plays a pivotal role in various biological processes. In addition to nucleic acid synthesis, uridine is critical to glycogen synthesis through the formation of uridine diphosphate glucose in which promotes the production of UDP-GlcNAc in the hexosamine biosynthetic pathway and supplies UDP-GlcNAc for O-GlcNAcylation. This process can regulate protein modification and affect its function. Moreover, Uridine has an effect on body temperature and circadian rhythms, which can regulate the metabolic rate and the expression of metabolic genes. Abnormal levels of blood uridine have been found in people with diabetes and obesity, suggesting a link of uridine dysregulation and metabolic disorders. At present, the role of uridine in glucose metabolism and lipid metabolism is controversial, and the mechanism is not clear, but it shows the trend of long-term damage and short-term benefit. Therefore, maintaining uridine homeostasis is essential for maintaining basic functions and normal metabolism. This article summarizes the latest findings about the metabolic effects of uridine and the potential of uridine metabolism as therapeutic target in treatment of metabolic disorders.

16.
Acta Diabetol ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38530415

OBJECTIVE: To examine the association between islet autoantibodies (IAbs) and the retinal neurovascular changes in type 1 diabetes mellitus (T1DM) with no diabetic retinopathy (NDR). METHODS: This cross-sectional study measured the neural retinal structure and microvascular density of 118 NDR eyes using spectral-domain optical coherence tomography angiography. Retinal structure parameters included retinal thickness (RT), inner retinal thickness (iRT), retina never fibral layer thickness (RNFL thickness), ganglion cell complex thickness (GCC thickness), and loss volume of GCC. Microvascular parameters included vessel density of superficial capillary plexus (sVD), vessel density of deep capillary plexus, and vessel density of choroid capillary plexus. Comparison and correlation analyses of these OCTA parameters were made with various IAbs, including glutamic acid decarboxylase antibody (GADA), tyrosine phosphatase-related islet antigen 2 antibody (IA2A), and zinc transporter 8 antibody (ZnT8A). A general linear model was used to understand the association of IAbs with the retina parameters. RESULTS: The IAb positive (IAbs +) group, which included 85 patients, had thinner RT (235.20 ± 18.10 mm vs. 244.40 ± 19.90 mm at fovea, P = 0.021) and thinner iRT (120.10 ± 9.00 mm vs. 124.70 ± 6.90 mm at parafovea, P = 0.015), compared with the IAb negative (IAbs-) group comprising 33 patients. Furthermore, a more severe reduction of RT was demonstrated in the presence of multiple IAbs. Among the three IAbs, GADA was the most significant independent risk factor of all-round RT decrease (ß = -0.20 vs. -0.27 at fovea and parafovea, respectively, P < 0.05), while titers of IA2A negatively affect sVD in the parafovea (ß = -0.316, P = 0.003). CONCLUSIONS: IAbs are associated with neural retinal thinning and microcirculation reduction in T1DM patients before the clinical onset of diabetic retinopathy.

17.
Biotechnol Adv ; 72: 108346, 2024.
Article En | MEDLINE | ID: mdl-38518963

Most enzyme modification strategies focus on designing the active sites or their surrounding structures. Interestingly, a large portion of the enzymes (60%) feature active sites located within spacious cavities. Despite recent discoveries, cavity-mediated enzyme engineering remains crucial for enhancing enzyme properties and unraveling folding-unfolding mechanisms. Cavity engineering influences enzyme stability, catalytic activity, specificity, substrate recognition, and docking. This article provides a comprehensive review of various cavity engineering models for enzyme modification, including cavity creation, filling, and reshaping. Additionally, it also discusses feasible tools for geometric analysis, functional assessment, and modification of cavities, and explores potential future research directions in this field. Furthermore, a promising universal modification strategy for cavity engineering that leverages state-of-the-art technologies and methodologies to tailor cavities according to the specific requirements of industrial production conditions is proposed.


Protein Engineering , Protein Engineering/methods , Enzyme Stability , Catalytic Domain
18.
Exp Eye Res ; 242: 109860, 2024 May.
Article En | MEDLINE | ID: mdl-38467174

Recent studies have highlighted that retinal neurodegeneration precedes microvascular changes in diabetic retinopathy (DR), but the specific mechanisms remain unclear. Given the pivotal role of dysfunctional mitochondria and oxidative stress in early DR, our objective was to observe mitochondria-related alterations in the neural retina of type one diabetic mellitus mice with no evidence of DR (T1DM-NDR). We aimed to identify the key mitochondrial-related proteins contributing to mitochondrial injury. Our study revealed that T1DM-NDR mice exhibited outer retina thinning, including the ellipsoid zone, inner segment, and outer segment. Additionally, there was an impaired amplitude of the b-wave in electroretinogram (ERG) and a disorganized arrangement of the photoreceptor layer. In both the retina of DM mice and high glucose (HG)-treated 661w cells, mitochondria appeared swollen and fragmented, with disrupted cristae, disorganized or shortened branches in the mitochondrial network, and decreased mitochondrial membrane potential. Among the mitochondrial-related proteins, dynamin-related protein 1 (Drp1) was upregulated, and the ratio of phosphorylated Drp1 protein at serine 616 (S616) and serine 637 (S637) sites significantly increased in the retina of DM mice. The administration of Mdivi-1 ameliorated high-glucose-induced dysfunctional mitochondria, thereby protecting T1DM-NDR mice retina from morphological and functional injuries. Our findings suggest that hyperglycemia promotes Drp1-mediated mitochondrial dysfunction, which may be a significant factor in the development of DR. The inhibition of high-glucose-induced mitochondrial fission emerges as a potential and innovative intervention strategy for preventing DR.


Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Dynamins , Electroretinography , Mice, Inbred C57BL , Mitochondria , Animals , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Mice , Dynamins/metabolism , Dynamins/genetics , Mitochondria/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/complications , Photoreceptor Cells, Vertebrate/pathology , Photoreceptor Cells, Vertebrate/metabolism , Male , Membrane Potential, Mitochondrial , Oxidative Stress , Blotting, Western
19.
Life Sci ; 345: 122577, 2024 May 15.
Article En | MEDLINE | ID: mdl-38521387

BACKGROUND: Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS: The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS: Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE: TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.


Hypothyroidism , Thyroid Hormones , Thyrotropin , Animals , Mice , Hypothyroidism/complications , Hypothyroidism/metabolism , Receptors, G-Protein-Coupled , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Signal Transduction , Thyroid Hormones/metabolism , Intestines/pathology
20.
Microb Cell Fact ; 23(1): 94, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539197

BACKGROUND: Surfactin, a green lipopeptide bio-surfactant, exhibits excellent surface, hemolytic, antibacterial, and emulsifying activities. However, a lack of clear understanding of the synthesis regulation mechanism of surfactin homologue components has hindered the customized production of surfactin products with different biological activities. RESULTS: In this study, exogenous valine and 2-methylbutyric acid supplementation significantly facilitated the production of C14-C15 surfactin proportions (up to 75% or more), with a positive correlation between the homologue proportion and fortified concentration. Subsequently, the branched-chain amino acid degradation pathway and the glutamate synthesis pathway are identified as critical pathways in regulating C14-C15 surfactin synthesis by transcriptome analysis. Overexpression of genes bkdAB and glnA resulted in a 1.4-fold and 1.3-fold increase in C14 surfactin, respectively. Finally, the C14-rich surfactin was observed to significantly enhance emulsification activity, achieving an EI24 exceeding 60% against hexadecane, while simultaneously reducing hemolytic activity. Conversely, the C15-rich surfactin demonstrated an increase in both hemolytic and antibacterial activities. CONCLUSION: This study presents the first evidence of a potential connection between surfactin homologue synthesis and the conversion of glutamate and glutamine, providing a theoretical basis for targeting the synthesis regulation and structure-activity relationships of surfactin and other lipopeptide compounds.


Fatty Acids , Surface-Active Agents , Fatty Acids/metabolism , Surface-Active Agents/metabolism , Glutamic Acid/metabolism , Lipopeptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Peptides, Cyclic/chemistry , Bacillus subtilis/genetics
...