Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Redox Biol ; 72: 103146, 2024 Jun.
Article En | MEDLINE | ID: mdl-38579589

Although platelet bioenergetic dysfunction is evident early in the pathogenesis of diabetic macrovascular complications, the bioenergetic characteristics in type 2 diabetic patients who developed coronary in-stent restenosis (ISR) and their effects on platelet function remain unclear. Here, we performed platelet bioenergetic profiling to characterize the bioenergetic alterations in 28 type 2 diabetic patients with ISR compared with 28 type 2 diabetic patients without ISR (non-ISR) and 28 healthy individuals. Generally, platelets from type 2 diabetic patients with ISR exhibited a specific bioenergetic alteration characterized by high dependency on fatty acid (FA) oxidation, which subsequently induced complex III deficiency, causing decreased mitochondrial respiration, increased mitochondrial oxidant production, and low efficiency of mitochondrial ATP generation. This pattern of bioenergetic dysfunction showed close relationships with both α-granule and dense granule secretion as measured by surface P-selectin expression, ATP release, and profiles of granule cargo proteins in platelet releasates. Importantly, ex vivo reproduction of high dependency on FA oxidation by exposing non-ISR platelets to its agonist mimicked the bioenergetic dysfunction observed in ISR platelets and enhanced platelet secretion, whereas pharmaceutical inhibition of FA oxidation normalized the respiratory and redox states of ISR platelets and diminished platelet secretion. Further, causal mediation analyses identified a strong association between high dependency on FA oxidation and increased angiographical severity of ISR, which was significantly mediated by the status of platelet secretion. Our findings, for the first time, uncover a pattern of bioenergetic dysfunction in ISR and enhance current understanding of the mechanistic link of high dependency on FA oxidation to platelet abnormalities in the context of diabetes.


Blood Platelets , Diabetes Mellitus, Type 2 , Energy Metabolism , Fatty Acids , Mitochondria , Oxidation-Reduction , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/complications , Blood Platelets/metabolism , Mitochondria/metabolism , Male , Fatty Acids/metabolism , Female , Middle Aged , Coronary Restenosis/metabolism , Coronary Restenosis/etiology , Aged , Stents/adverse effects
2.
Redox Biol ; 57: 102507, 2022 Nov.
Article En | MEDLINE | ID: mdl-36244294

Type 2 diabetes mellitus (T2DM) is a strong indicator of late stent thrombosis (LST). Platelet bioenergetic dysfunction, although critical to the pathogenesis of diabetic macrovascular complications, remains uncharacterized in T2DM patients who developed LST. Here, we explored the mechanistic link between the alterations in platelet bioenergetics and LST in the setting of T2DM. Platelet bioenergetics, metabolomics, and their interactomes were analyzed in a nested case-control study including 15 T2DM patients who developed LST and 15 matched T2DM patients who did not develop LST (non-LST). Overall, we identified a bioenergetic alteration in T2DM patients with LST characterized by an imbalanced NAD+/NADH redox state resulting from deficient mitochondrial complex I (NADH: ubiquinone oxidoreductase) activity, which led to reduced ATP-linked and maximal mitochondrial respiration, increased glycolytic flux, and platelet hyperactivation compared with non-LST patients. Congruently, platelets from LST patients exhibited downregulation of tricarboxylic acid cycle and NAD+ biosynthetic pathways as well as upregulation of the proximal glycolytic pathway, a metabolomic change that was primarily attributed to compromised mitochondrial respiration rather than increased glycolytic flux as evidenced by the integrative analysis of bioenergetics and metabolomics. Importantly, both bioenergetic and metabolomic aberrancies in LST platelets could be recapitulated ex vivo by exposing the non-LST platelets to a low dose of rotenone, a complex I inhibitor. In contrast, normalization of the NAD+/NADH redox state, either by increasing NAD+ biosynthesis or by inhibiting NAD+ consumption, was able to improve mitochondrial respiration, inhibit mitochondrial oxidant generation, and consequently attenuate platelet aggregation in both LST platelets and non-LST platelets pretreated with low-dose rotenone. These data, for the first time, delineate the specific patterns of bioenergetic and metabolomic alterations for T2DM patients who suffer from LST, and establish the deficiency of complex I-derived NAD+ as a potential pathogenic mechanism in platelet abnormalities.

...