Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891399

RESUMEN

Designing innovative anode materials that exhibit excellent ion diffusion kinetics, enhanced structural stability, and superior electrical conductivity is imperative for advancing the rapid charge-discharge performance and widespread application of sodium-ion batteries. Hollow-structured materials have received significant attention in electrode design due to their rapid ion diffusion kinetics. Building upon this, we present a high-performance, free-standing MoO2@hollow carbon nanofiber (MoO2@HCNF) electrode, fabricated through facile coaxial electrospinning and subsequent heat treatment. In comparison to MoO2@carbon nanofibers (MoO2@CNFs), the MoO2@HCNF electrode demonstrates superior rate capability, attributed to its larger specific surface area, its higher pseudocapacitance contribution, and the enhanced diffusion kinetics of sodium ions. The discharge capacities of the MoO2@HCNF (MoO2@CNF) electrode at current densities of 0.1, 0.2, 0.5, 1.0, 2.0 and 5.0 A g-1 are 195.55 (155.49), 180.98 (135.20), 163.81 (109.71), 144.05 (90.46), 121.16 (71.21) and 88.90 (44.68) mAh g-1, respectively. Additionally, the diffusion coefficients of sodium ions in the MoO2@HCNFs are 8.74 × 10-12 to 1.37 × 10-12 cm2 s-1, which surpass those of the MoO2@CNFs (6.49 × 10-12 to 9.30 × 10-13 cm2 s-1) during the discharging process. In addition, these prepared electrode materials exhibit outstanding flexibility, which is crucial to the power storage industry and smart wearable devices.

2.
Small Methods ; 6(4): e2101470, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35212473

RESUMEN

Large scale solar-driven hydrogen production is a crucial step toward decarbonizing society. However, the solar-to-hydrogen (STH) conversion efficiency, long-term stability, and cost-effectiveness in hydrogen evolution reaction (HER) still need to be improved. Herein, an efficient approach is demonstrated to produce low-dimensional Pt/graphene-carbon nanofibers (CNFs)-based heterostructures for bias-free, highly efficient, and durable HER. Carbon dots are used as efficient building blocks for the in situ formation of graphene along the CNFs surface. The presence of graphene enhances the electronic conductivity of CNFs to ≈3013.5 S m-1  and simultaneously supports the uniform Pt clusters growth and efficient electron transport during HER. The electrode with a low Pt loading amount (3.4 µg cm-2 ) exhibits a remarkable mass activity of HER in both acidic and alkaline media, which is significantly better than that of commercial Pt/C (31 µg cm-2  of Pt loading). In addition, using a luminescent solar concentrator-coupled solar cell to provide voltage, the bias-free water splitting system exhibits an STH efficiency of 0.22% upon one-sun illumination. These results are promising toward using low-dimensional heterostructured catalysts for future energy storage and conversion applications.

3.
Polymers (Basel) ; 13(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374695

RESUMEN

Design and synthesis of flexible and self-supporting electrode materials in high-performance lithium storage is significant for applications in the field of smart wearable devices. Herein, flexible carbon nanofiber membranes with uniformly distributed molybdenum dioxide (MoO2) nanocrystals are fabricated by a needlefree electrospinning method combined with the subsequent carbonization process, which exhibits outstanding structural stability under abrasion and deformation. The as-fabricated lithium-ion batteries (LIBs) exhibit a high discharge of 450 mAh g-1 after 500 cycles at 2000 mA g-1 by using the MoO2/C nanofiber membrane as the self-supporting anode. Further, the nanofibers structure remains intact after 500 cycles, which reflects the excellent stability of the materials. This study provides a simple and effective method for the preparation of MoO2/C nanofiber materials, which can not only maintain its excellent electrochemical and physical properties, but also easily realize large-scale production. It is undoubtedly beneficial for the development of flexible LIBs and smart wearable devices.

4.
Small ; 16(49): e2004692, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33201585

RESUMEN

Inspired by "micro/nanoreactor" effect of cellular organelle on specific biochemical reactions, a double honeycomb-like hierarchical capsule confined encapsulation with functional micro/nanocrystals is designed. The bioinspired hierarchical capsules derived from polymeric composite microspheres are successfully fabricated through a combination of selective chemical etching and pyrolysis. In situ introduction of functional guests (including organometallic molecules, tetraethoxysilane, or metal-organic frameworks (MOFs)) into internal cellular structure of microspheres is first put forward by phase inversion method. The development of selective etching creates honeycomb-like structure on the outside surface of capsule and allows sulfur to homogeneously distribute into matrix. With the novel approach, the hierarchical channels (micro-meso-macropore) of composite capsule enhance transportation of reactants and dispersion of active sites, and thus exhibit superior photocatalytic oxidation and electromagnetic absorbing. The promising strategy will be applied more generally to encapsulate different species into hierarchical capsule with tailored properties and functionalities.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Microesferas
5.
Water Res ; 187: 116430, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33011566

RESUMEN

Low microbial activity and serious membrane biofouling are still critical problems that hinder the extensive application of membrane bioreactor (MBR) for industrial wastewater treatment. To address these bottlenecks, we report a new specialized microorganism encapsulation strategy for constructing a highly efficient MBR system. In our study, the algae-entrapping fiber macrospheres with polymeric coating were first coupled with membrane separation for treating refractory high-ammonia nitrogen wastewater. In comparison with traditional alginate beads, the developed macrocapsule (~0.5 cm) exhibited higher biomass harvesting and lower microbial leakage because of the confined micro-aerobic environment created by dual encapsulation of rigid inorganic macrosphere and porous polymeric layers. Application of algae-encapsulating macrocapsule to MBR presented excellent chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal efficiency of 62.23 and 97.38 %, respectively, which were higher than the corresponding values for algae/SA beads and free algae. The biodegradation performance of NH3-N by encapsulated microalgae was similar or superior to that by free cells when the initial content of ammonia nitrogen ranged from 50 to 100 mg/L. The results well demonstrated that the GFS@polymer macrocapsule as a physical barrier reduced the inhibitory effect of higher concentration ammonia nitrogen on the bioactivity of living cells. Importantly, the encapsulated core-shell macrocapsules showed superior anti-biofouling capacity, which had a membrane resistance of 3-5 times lower than that of cell/alginate beads and free cells. This work will open a new avenue to develop a novel encapsulated MBR for various non-degradable wastewater treatments as an energy-saving and sustainable way.


Asunto(s)
Incrustaciones Biológicas , Purificación del Agua , Amoníaco , Reactores Biológicos , Membranas Artificiales , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...