Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 12: 815679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126471

RESUMEN

Objective: The aim was to study the benefits and risks of anti-CD19 chimeric antigen receptor (CAR) T-cells in adults with B-cell lymphoma. Methods: From October 2015 to October 2021, we treated five patients with B-cell lymphoma, comprising two with mantle cell lymphoma, one case of Burkitt lymphoma, one case of diffuse large B-cell lymphoma, and one case of chronic lymphocytic leukemia/small lymphocytic lymphoma. The patients were given the FC regimen 5 days before the infusion of anti-CD19 CAR T-cells. The median total number of CAR T-cells infusions was 350*10^6 (88*10^6-585*10^6). Results: 1) Patients who received CAR T-cell induction therapy achieved complete remission (CR) in Case 1 and Case 3 and partial remission (PR) in Case 2. Case 3's ATM and D13S25 gene deletions were negative 42 days after CAR T-cell therapy, and molecular biology CR (mCR) and minimal residual disease (MRD) were negative for 5 years and 6 months. The patient in Case 3 was cured. 2) Case 4 patient's TP53 gene mutation became negative 1 month after CAR T-cell therapy. MRD was negative after CAR T-cell therapy at 41 and 42 months in Cases 4 and 5, respectively. 3) Case 1∼Case 3 patients developed cytokine release syndrome (CRS) without encephalopathy syndrome, accompanied with serious adverse events. CRS can be effectively managed with tocilizumab, etanercept, glucocorticoids, and plasmapheresis. Conclusion: Anti-CD19 CAR T-cell therapy is effective in treating relapsed/refractory B-cell lymphoma, and the side effects of CAR T-cell therapy can be properly managed. CAR T-cell therapy has high efficacy and presented no side effects in the treatment of MRD in B-cell lymphoma (NCT03685786, NCT02456350).

2.
Mol Plant ; 11(3): 429-442, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29229569

RESUMEN

Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ∼1.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ∼125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthesize long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rubber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis.


Asunto(s)
Genoma de Planta/genética , Hemiterpenos/metabolismo , Hevea/genética , Hevea/metabolismo , Filogenia , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...