Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3665, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871104

RESUMEN

Soil organic carbon (C) and aggregates are the important components of soil fertility and the foundation of sustainable agriculture. The storage and protection of SOC in aggregates is widely regarded as the material basis of soil organic C accumulation. However, current understanding of soil aggregate and its associated organic C is insufficient to elucidate the regulation mechanism of soil organic C. A nine-year field experiment including chemical fertilizer (FR) and organic manure (OM) treatments was set up in the eastern plain of Funiu Mountain, central China. Using chemical analysis, physical sieving as well as nuclear magnetic resonance (NMR) methods, we mainly probed into the response of soil organic C concentration and composition, and C functional groups, water-stable aggregates to different treatments. Furthermore, scanning electronic microscopy (SEM) and partial least square structural equation modelling (PLS-SEM) was conducted to characterise the different size aggregates and to analyse the mechanism of soil organic C accumulation and stabilisation at aggregate scales. After nine years of farming, OM treatment substantially increased soil organic C content (by 3.77 g kg-1) and significantly enhanced the formation of macro-aggregates (> 250 µm), while FR had no significant influence on soil organic C. At the aggregate scale, the amounts of soil organic C, C physical fractions (particulate and mineral-associated organic C), total nitrogen and microbial biomass carbon associated in macro-aggregates (> 250 µm) were obviously higher than that in micro-aggregates and silt + clay fraction, and OM treatment greatly increased the accumulation of soil organic C and its components in macro-aggregates. Moreover, microbial biomass carbon (MBC) amounts in aggregates were remarkably increased (27-116%) by the application of OM. And MBC had a positively effect on the physical fractions of SOC but not on the C chemical structure within aggregates. The present study indicated that soil organic C accumulation mainly rely on macro-aggregates (> 250 µm). Intra-particulate organic carbon (POC) and mineral-associated organic carbon (MOC) within macro-aggregates played an important role in soil organic C accumulation. Meanwhile, soil microbes were a driving force for the accumulation of soil organic C physical fractions (POC and MOC). We concluded that OM treatment accelerated the synergistic process between organic C sequestration and soil aggregation, and showed great potential to increase soil organic C accumulation.

2.
J Agric Food Chem ; 69(7): 2245-2252, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33576230

RESUMEN

Poly(ethylene terephthalate) (PET) is one of the most commonly used plastics worldwide and its accumulation in the environment is a global problem. PETase from Ideonella sakaiensis 201-F6 was reported to exhibit higher hydrolytic activity and specificity for PET than other enzymes at ambient temperature. Enzymatic degradation of PET using PETase provides an attractive approach for plastic degradation and recycling. In this work, extracellular PETase was achieved by Escherichia coli BL21 using a Sec-dependent translocation signal peptide, pelB, for secretion. Furthermore, engineering of the pelB through random mutagenesis and screening was performed to improve the secretion efficiency of PETase. Evolved pelB enabled higher PETase secretion by up to 1.7-fold. The improved secretion of PETase led to more efficient hydrolysis of the PET model compound, bis (2-hydroxyethyl) terephthalic acid (BHET), PET powder, and PET film. Our study presents the first example of the increasing secretion of PETase by an engineered signal peptide, providing a promising approach to obtain extracellular PETase for efficient enzymatic degradation of PET.


Asunto(s)
Burkholderiales , Señales de Clasificación de Proteína , Burkholderiales/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolasas/metabolismo
3.
PLoS One ; 15(3): e0229644, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32163434

RESUMEN

BACKGROUND AND AIMS: This paper was primarily devoted to understand the interactions of soil aggregates, organic carbon (C) and carbon cycle enzymes in aggregates under different fertilization managements, aiming to identify the effects of organic and inorganic fertilizer amendments on soil organic C accumulation and the activities of carbon cycle enzymes within aggregates in Vertisol. METHODS: A Vertisol soil following 4-year compost and inorganic fertilizer amendments, i.e. no fertilizer (CK), mineral fertilizer (FR) and 60% compost N plus 40% fertilizer N (FRM), was collected to identify the dynamics of organic C, enzymes activities and their associations with macroaggregation using aggregate fractionation techniques. RESULTS: The organic C content in all FR and FRM treatments was 8.24-41.15% higher than that in CK. An increased amounts of carbon cycle enzymes in aggregates or 0-20 cm bulk soil were also observed in FRM plots. Compared to FR, FRM significantly strengthened the structural stability of macroaggregates and the intimate connection between enzyme activities and macroaggregates. CONCLUSIONS: As a recommended measure, supplementation with organic manure such as compost strengthened the process of mutual promotion between carbon cycle enzymes and macroaggregates, and the synergistic effect would be highly beneficial to soil organic C sequestration.


Asunto(s)
Ciclo del Carbono , Compostaje , Fertilizantes/análisis , Suelo/química , Agricultura/métodos , Carbono/análisis , Ciclo del Carbono/fisiología , Secuestro de Carbono , China , Enzimas/análisis , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA