Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 595
1.
Cancer Cell Int ; 24(1): 158, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711062

OBJECTIVE: Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS: HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS: HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION: Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.

2.
Lung ; 2024 May 16.
Article En | MEDLINE | ID: mdl-38753183

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.

3.
Neurosci Bull ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38589712

Deafness is the prevailing sensory impairment among humans, impacting every aspect of one's existence. Half of congenital deafness cases are attributed to genetic factors. Studies have shown that Luzp2 is expressed in hair cells (HCs) and supporting cells of the inner ear, but its specific role in hearing remains unclear. To determine the importance of Luzp2 in auditory function, we generated mice deficient in Luzp2. Our results revealed that Luzp2 has predominant expression within the HCs and pillar cells. However, the loss of Luzp2 did not result in any changes in auditory threshold. HCs or synapse number and HC stereocilia morphology in Luzp2 knockout mice did not show any notable distinctions. This was the first study of the role of Luzp2 in hearing in mice, and our results provide important guidance for the screening of deafness genes.

4.
Heliyon ; 10(7): e27475, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560189

We determined RNA spectrum of the human RSK4 (hRSK4) gene (also called RPS6KA6) and identified 29 novel mRNA variants derived from alternative splicing, which, plus the NCBI-documented ones and the five we reported previously, totaled 50 hRSK4 RNAs that, by our bioinformatics analyses, encode 35 hRSK4 protein isoforms of 35-762 amino acids. Many of the mRNAs are bicistronic or tricistronic for hRSK4. The NCBI-normalized NM_014496.5 and the protein it encodes are designated herein as the Wt-1 mRNA and protein, respectively, whereas the NM_001330512.1 and the long protein it encodes are designated as the Wt-2 mRNA and protein, respectively. Many of the mRNA variants responded differently to different situations of stress, including serum starvation, a febrile temperature, treatment with ethanol or ethanol-extracted clove buds (an herbal medicine), whereas the same stressed situation often caused quite different alterations among different mRNA variants in different cell lines. Mosifloxacin, an antibiotics and also a functional inhibitor of hRSK4, could inhibit the expression of certain hRSK4 mRNA variants. The hRSK4 gene likely uses alternative splicing as a handy tool to adapt to different stressed situations, and the mRNA and protein multiplicities may partly explain the incongruous literature on its expression and comports.

5.
Article En | MEDLINE | ID: mdl-38644354

BACKGROUND: There are no effective pharmacological treatments for sarcopenia. We aim to identify potential therapeutic targets for sarcopenia by integrating various publicly available datasets. METHODS: We integrated druggable genome data, cis-eQTL/cis-pQTL from human blood and skeletal muscle tissue, and GWAS summary data of sarcopenia-related traits to analyse the potential causal relationships between drug target genes and sarcopenia using the Mendelian Randomization (MR) method. Sensitivity analyses and Bayesian colocalization were employed to validate the causal relationships. We also assessed the side effects or additional indications of the identified drug targets using a phenome-wide MR (Phe-MR) approach and investigated actionable drugs for target genes using available databases. RESULTS: MR analysis identified 17 druggable genes with potential causation to sarcopenia in human blood or skeletal muscle tissue. Six of them (HP, HLA-DRA, MAP 3K3, MFGE8, COL15A1, and AURKA) were further confirmed by Bayesian colocalization (PPH4 > 90%). The up-regulation of HP [higher ALM (beta: 0.012, 95% CI: 0.007-0.018, P = 1.2*10-5) and higher grip strength (OR: 0.96, 95% CI: 0.94-0.98, P = 4.2*10-5)], MAP 3K3 [higher ALM (beta: 0.24, 95% CI: 0.21-0.26, P = 1.8*10-94), higher grip strength (OR: 0.82, 95% CI: 0.75-0.90, P = 2.1*10-5), and faster walking pace (beta: 0.03, 95% CI: 0.02-0.05, P = 8.5*10-6)], and MFGE8 [higher ALM (muscle eQTL, beta: 0.09, 95% CI: 0.06-0.11, P = 6.1*10-13; blood pQTL, beta: 0.05, 95% CI: 0.03-0.07, P = 3.8*10-09)], as well as the down-regulation of HLA-DRA [lower ALM (beta: -0.09, 95% CI: -0.11 to -0.08, P = 5.4*10-36) and lower grip strength (OR: 1.13, 95% CI: 1.07-1.20, P = 1.8*10-5)] and COL15A1 [higher ALM (muscle eQTL, beta: -0.07, 95% CI: -0.10 to -0.04, P = 3.4*10-07; blood pQTL, beta: -0.05, 95% CI: -0.06 to -0.03, P = 1.6*10-07)], decreased the risk of sarcopenia. AURKA in blood (beta: -0.16, 95% CI: -0.22 to -0.09, P = 2.1*10-06) and skeletal muscle (beta: 0.03, 95% CI: 0.02 to 0.05, P = 5.3*10-05) tissues showed an inverse relationship with sarcopenia risk. The Phe-MR indicated that the six potential therapeutic targets for sarcopenia had no significant adverse effects. Drug repurposing analysis supported zinc supplementation and collagenase clostridium histolyticum might be potential therapeutics for sarcopenia by activating HP and inhibiting COL15A1, respectively. CONCLUSIONS: Our research indicated MAP 3K3, MFGE8, COL15A1, HP, and HLA-DRA may serve as promising targets for sarcopenia, while the effectiveness of zinc supplementation and collagenase clostridium histolyticum for sarcopenia requires further validation.

6.
Heliyon ; 10(8): e27422, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38644883

Background: Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods: Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results: Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions: The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.

7.
Biochem Biophys Res Commun ; 704: 149704, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38430700

Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.


Cochlea , Synapses , Animals , Mice , Synapses/physiology , Thyroid Hormones , Spiral Ganglion , Hearing/physiology , Mice, Knockout
8.
Sleep Med ; 117: 162-168, 2024 May.
Article En | MEDLINE | ID: mdl-38547593

BACKGROUND AND OBJECTIVE: Rumination, a common factor of chronic insomnia disorder (CID) caused by cognitive-emotional arousal, is associated with an increased amount of rapid eye movement (REM) sleep. However, the specific subtypes, such as phasic REM and tonic REM, that contribute to the increased REM sleep have not been reported. This study aimed to determine the association between rumination and different REM sleep subtypes in patients with CID. METHODS: This study enrolled 35 patients with CID and 27 age- and sex-matched healthy controls. The Immersion-Rumination Questionnaire evaluated participants' rumination, and the Insomnia Severity Index was used to assess insomnia severity. Finally, polysomnography was used to monitor objective sleep quality and quantification of different types of REM. RESULTS: The CID patients had higher rumination scores than the healthy controls. They had a shorter REM sleep duration, less phasic REM, a lower percentage of phasic REM time, and a higher percentage of tonic REM time. Spectral analysis revealed that the patients affected by insomnia had higher ß power during REM sleep, higher ß and σ power during phasic REM sleep, and higher ß, and γ power during tonic REM sleep. Partial correlation analysis showed that rumination in the CID patients correlated negatively with the duration of phasic REM sleep. Additionally, rumination correlated negatively with δ power in REM sleep and positively with ß power in REM sleep, tonic REM sleep, phasic REM sleep, N3and N2 sleep in the patients with CID. CONCLUSION: The CID patients had stronger rumination, reduced total and phasic REM sleep, and the stronger rumination was, the shorter phasic REM was and the higher fast (ß) wave power in REM sleep.


REM Sleep Behavior Disorder , Sleep Initiation and Maintenance Disorders , Humans , Sleep, REM , Sleep Initiation and Maintenance Disorders/complications , Polysomnography , Arousal , REM Sleep Behavior Disorder/complications
9.
Molecules ; 29(5)2024 Feb 25.
Article En | MEDLINE | ID: mdl-38474511

This study investigates the synergistic effect and mechanism of gelling materials with blast furnace slag (BFS), steel slag (SS) and desulphurization gypsum (DG) as the main components on the hardening of heavy metal ions by lead and zinc tailings. It is found that lead and zinc tailing (LZT) is mainly composed of dolomite and quartz and contain small amounts of calcium, aluminum, iron, magnesium and other elements as well as heavy metals such as lead and zinc. By the mechanical activation method, it is found that the lead and zinc tailings powder has the largest specific surface area and the highest activity index when the ball milling time is 2 h. At a hardening timepoint of 28 d, the calcite crystals in the samples are intertwined with the amorphous C-S-H gel (C-S-H gels are mainly composed of 3CaO∙SiO2 and 2CaO∙SiO2), which enhances the structural strength of the samples. The chemical reaction analysis confirmed that the formation of calcite is a major driver for the hydration reaction of the steel slag-desulphurization gypsum (SSSDG) system. Overall, the slag, steel slag and desulphurization gypsum solid waste-based gelling materials have synergistic effects in hardening heavy metals by limiting the leaching of metal ions, adsorbing metal ions and hardening heavy metals, and facilitating the hydration process through the formation of compound salt precipitates.

10.
J Org Chem ; 89(7): 4947-4957, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38498700

A photoredox/copper-catalyzed cascade radical cyclization/phosphorothiolation reaction of N-allylbromoacetamides and P(O)SH compounds has been established. A broad range of novel nonfluorine- or difluoro-substituted 2-pyrrolidinones bearing the C(sp3)-SP(O)(OR)2 moiety can be conveniently constructed in moderate to good yields under mild conditions. Importantly, most of the tested phosphorothiolated 2-pyrrolidinones showed potent inhibitory effects toward both AChE and BChE.

11.
Psychophysiology ; : e14573, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38530127

Although empathy for pain plays an important role in positive interpersonal relationships and encourages engagement in prosocial behavior, it remains largely unknown whether empathy for pain could be effectively altered by psychophysiological techniques. This study aimed to investigate the impact of a single session of diaphragmatic breathing practice on empathy for pain and examine the potential mechanism involving interoceptive awareness. A total of 66 healthy participants were randomly assigned to the intervention group or the control group. The intervention group received a 15-minute diaphragmatic breathing (DB) practice with real-time biofeedback, while the control group was to gaze at a black screen at rest and not engaged in any other activities. Before and after the invention, all participants were instructed to evaluate the intensity and unpleasantness of empathy for pain while watching different pictures with pain or non-pain conditions. The Multidimensional Assessment of Interoceptive Awareness (MAIA) was then administered to measure interoceptive awareness. The results indicated a significant interaction between group and time with regard to empathy for pain and MAIA. The DB group showed a statistically significant decrease in both pain intensity and unpleasantness during the pain picture condition, as well as a noteworthy increase in MAIA scores. The control group did not demonstrate any substantial changes. More importantly, the regulation of attention, a dimension of MAIA, had a significant mediating effect on the impact of diaphragmatic breathing on reported unpleasantness. Diaphragmatic breathing could serve as a simple, convenient, and practical strategy to optimize human empathy for pain that warrants further investigation, which has important implications not only for individuals with impaired empathy for pain but also for the improvement of interoceptive awareness.

12.
Schizophr Res Cogn ; 36: 100308, 2024 Jun.
Article En | MEDLINE | ID: mdl-38511167

Although schizophrenia patients exhibit structural abnormalities in the striatum, it remains largely unknown for the role of the striatum subregions in the treatment response of antipsychotic drugs. The purpose of this study was to investigate the associations between the striatal subregions and improved clinical symptoms in first-episode drug-naïve (FEDN) schizophrenia. Forty-two FEDN schizophrenia patients and 29 healthy controls (HCs) were recruited. At baseline, the Positive and Negative Syndrome Scale (PANSS) was used to assess the clinical symptoms of patients, MRI scanner was used to obtain anatomical images of patients and HCs. After 12-week stable doses of risperidone treatment, clinical symptoms were obtained in 38 patients and anatomical images in 26 patients. After 12 weeks of treatment, the left nucleus accumbens volume decreased, whereas the left pallidum volume increased in schizophrenia patients. The decreased left nucleus accumbens volume was positively correlated with cognitive factor improvement measured by PANSS. Intriguingly, greater left nucleus accumbens volume at baseline predicted greater cognitive improvements. Furthermore, the responders who had >50 % improvement in cognitive symptoms exhibited significantly greater baseline left nucleus accumbens volume compared to non-responders. The left striatum volume at baseline and after treatment predicted the cognitive improvements in FEDN schizophrenia, which could be a potential biomarker for the development of precision medicine approaches targeting cognitive function.

14.
Rom J Morphol Embryol ; 65(1): 107-112, 2024.
Article En | MEDLINE | ID: mdl-38527990

Pulmonary nodules are a common complication in solid organ transplant recipients, and may have various underlying causes, with Epstein-Barr virus-associated smooth muscle tumor (EBV-SMT) being one of them. Given the rarity of this entity, we describe the diagnosis and therapeutic interventions for post-transplant EBV-SMT in two individuals. Both cases involved female patients who were diagnosed with multiple pulmonary nodules 60 months and 116 months, respectively, after receiving living-related kidney transplantation. Pathological examination revealed a spindle cell tumor, with immunophenotype and EBV in situ hybridization supporting the diagnosis of EBV-SMT. After diagnosis, these two patients underwent intervention by decreasing their intake of immunosuppressants. As of the latest follow-up, the patients' lesion size remained stable, and their overall condition was favorable. We also reviewed literature about the morphological and molecular pathological features of EBV-SMT and highlighted the diagnosis and differential diagnosis of pulmonary spindle cell lesions especially in the setting of immunosuppression.


Epstein-Barr Virus Infections , Kidney Transplantation , Smooth Muscle Tumor , Female , Humans , Diagnosis, Differential , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/genetics , Kidney Transplantation/adverse effects , Smooth Muscle Tumor/diagnosis , Smooth Muscle Tumor/etiology , Smooth Muscle Tumor/pathology
15.
Int J Biol Macromol ; 266(Pt 1): 131040, 2024 May.
Article En | MEDLINE | ID: mdl-38518937

This study aimed to solve the issue of poor lipophilicity of natural bovine serum albumin (BSA) by combining with liposomes (Lips) to stabilize high oil-phase emulsions (HOPEs). The interaction between BSA and Lips was mainly driven by hydrophobic forces, followed by hydrogen bonding. The secondary structure and tertiary structure of BSA were characterized and indicated that the addition of Lips promoted the structural expansion of BSA exposing the hydrophobic groups inside. Interfacial adsorption behaviours were assessed through dynamic interfacial tension, three-phase contact angle, and quartz crystal microbalance with dissipation. These results indicated that BSA-Lips crosslinking improved wettability, promoting adsorption and rearrangement at the oil-water interface, thereby resulting in a dense interfacial layer. The emulsifying efficacy of BSA-stabilized HOPEs also displayed a distinct Lips dependency. Varying the BSA-to-Lips ratio transformed their consistency from flowing to semi-solid, reinforcing the gel network. Under optimal conditions (BSA: Lips = 1:1), the droplet size of BSA-Lips stabilized HOPEs reached a minimum with a highly uniform distribution. Moreover, a 1:1 BSA to Lips ensured outstanding storage, thermal, and centrifugal stability for the HOPEs. This work provides valuable references for the interaction between protein and Lips, guiding the development of highly stable HOPEs stabilizers.


Emulsions , Liposomes , Serum Albumin, Bovine , Serum Albumin, Bovine/chemistry , Liposomes/chemistry , Emulsions/chemistry , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Oils/chemistry , Adsorption , Wettability
16.
J Sci Food Agric ; 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38334319

BACKGROUND: Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS: The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION: These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.

17.
Mater Today Bio ; 25: 100965, 2024 Apr.
Article En | MEDLINE | ID: mdl-38318477

The pathogenesis of ulcerative colitis (UC) is closely related to severe inflammation, damaged colonic mucosal barrier, increased oxidative stress and intestinal ecological imbalance. However, due to the nonspecific distribution and poor bioavailability of drugs, UC treatment is still a serious challenge. Here, a mitochondria/colon dual targeted nanoparticles based on redox response was developed to effectively alleviate UC. Cannabidiol nanoparticles (CBD NPs) with a particle size of 143.2 ± 3.11 nm were prepared by self-assembly using polymers (TPP-IN-LA) obtained by modifying inulin with (5-carboxypentyl) triphenyl phosphonium bromide (TPP) and α-lipoic acid (α-LA). Excitingly, the constructed CBD NPs showed excellent mitochondrial targeting, with a Pearson correlation coefficient of 0.76 at 12 h. The results of animal imaging in vivo showed that CBD NPs could be effectively accumulated in colon tissue. Not only that, CBD showed significant glutathione stimulated release in the presence of 10 mM glutathione at pH 7.4. The results of in vivo animal experiments showed that CBD NPs significantly ameliorated DSS-induced colonic inflammation by modulating the TLR4-NF-κB signaling pathway. Moreover, CBD NPs significantly improved the histological damage of colon in UC mice, increased the expression level of tight junction protein ZO-1, and effectively restored the intestinal mucosal barrier function and intestinal mucosal permeability. More importantly, CBD NPs significantly improved the species composition, abundance and amount of short chain fatty acids of intestinal flora in UC mice, thus effectively maintaining the balance of intestinal flora. The dual-targeted and glutathione-responsive nanoparticles prepared in this study provide a promising idea for achieving targeted delivery of CBD for effective treatment of UC.

18.
ACS Sens ; 9(1): 379-387, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38175523

Antimicrobial resistance (AMR) is predicted to become the leading cause of death worldwide in the coming decades. Rapid and on-site antibiotic susceptibility testing (AST) is crucial for guiding appropriate antibiotic choices to combat AMR. With this in mind, we have designed a simple and efficient plasmonic nanosensor consisting of Cu2+ and cysteine-modified AuNP (Au/Cys) that utilizes the metabolic activity of bacteria toward Cu2+ for bacterial detection and AST. When Cu2+ is present, it induces the aggregation of Au/Cys. However, in the presence of bacteria, Cu2+ is metabolized to varying extents, resulting in distinct levels of aggregation. Moreover, the metabolic activity of bacteria can be influenced by their antibiotic susceptibility, allowing us to differentiate between susceptible and resistant strains through direct color changes from the Cu2+-Au/Cys platform over approximately 3 h. These color changes can be easily detected using naked-eye observation, smartphone analysis, or absorption readout. We have validated the platform using four clinical isolates and six types of antibiotics, demonstrating a clinical sensitivity and specificity of 95.8%. Given its simplicity, low cost, high speed, and high accuracy, the plasmonic nanosensor holds great potential for point-of-care detection of antibiotic susceptibility across various settings.


Anti-Bacterial Agents , Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
19.
Age Ageing ; 53(1)2024 Jan 02.
Article En | MEDLINE | ID: mdl-38275096

OBJECTIVES: Frailty is a risk factor for faster cognitive decline, while plant-based dietary patterns are associated with decreased risk of cognitive decline. We aimed to explore their interaction with cognitive function among older adults. METHODS: We used data from the Chinese Longitudinal Healthy Longevity Survey between 2008 and 2018. Frailty was evaluated based on the frailty index (FI), and the plant-based diet index (PDI) was calculated using food frequency questionnaire at baseline. Repeated measures of the Mini-Mental State Examination (MMSE) were utilised to assess cognitive function. We used linear mixed models to estimate regression coefficients (ß) and 95% confidence intervals (CI). RESULTS: We included 7,166 participants with a median follow-up of 5.8 years. Participants in pre-frail (ß = -0.18, 95% CI: -0.24, -0.13) and frail (ß = -0.39, 95% CI: -0.48, -0.30) groups experienced an accelerated decline in MMSE score compared with the robust group. The PDI modified the above association, with corresponding associations with frailty being much more pronounced among participants with a lower PDI (frail vs. robust ß = -0.44, 95% CI: -0.56, -0.32), compared with those with a higher PDI (frail vs. robust ß = -0.27, 95% CI: -0.40, -0.13). In addition, A combination of frailty and a low PDI was strongly associated with a faster decline in MMSE score (ß = -0.52, 95% CI: -0.63, -0.41). CONCLUSION: Adherence to plant-based dietary patterns attenuates the association between frailty and cognitive decline. If the observed association is causal, promoting plant-based dietary patterns may be a strategy to reduce the effects of frailty on neurological health.


Cognitive Dysfunction , Frailty , Humans , Aged , Frailty/diagnosis , Frailty/epidemiology , Frailty/complications , Dietary Patterns , Longitudinal Studies , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , China/epidemiology , Frail Elderly
20.
Res Sq ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38260478

N-acetylaspartate (NAA), the brain's second most abundant metabolite, provides essential substrates for myelination through its hydrolysis. However, activities and physiological roles of NAA in other tissues remain unknown. Here, we show aspartoacylase (ASPA) expression in white adipose tissue (WAT) governs systemic NAA levels for postprandial body temperature regulation. Proteomics and mass spectrometry revealed NAA accumulation in WAT of Aspa knockout mice stimulated the pentose phosphate pathway and pyrimidine production. Stable isotope tracing confirmed higher incorporation of glucose-derived carbon into pyrimidine metabolites in Aspa knockout cells. Additionally, serum NAA positively correlates with the pyrimidine intermediate orotidine and this relationship predicted lower body mass index in humans. Using whole-body and tissue-specific knockout mouse models, we demonstrate that fat cells provided plasma NAA and suppressed postprandial body temperature elevation. Furthermore, exogenous NAA supplementation reduced body temperature. Our study unveils WAT-derived NAA as an endocrine regulator of postprandial body temperature and physiological homeostasis.

...