Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Intervalo de año de publicación
1.
Bioresour Technol ; 378: 129013, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37019414

RESUMEN

Azo dyes are significant organic pollutants known for their adverse effects on humans and aquatic life. In this study, anthraquinone-2-sulfonate (AQS) immobilized on biochar (BC) was employed as a novel carrier in up-flow anaerobic fixed-bed reactors to induce specific biofilm formation and promote the biotransformation efficiency of azo dyes. Novel carrier-packed reactor 1 (R1) and BC-packed reactor 2 (R2) were used to treat red reactive 2 (RR2) under continuous operation for 175 days. The decolorization rates of R1 and R2 were 96-83% and 91-73%, respectively. The physicochemical characteristics and extracellular polymeric substances (EPS) of the biofilm revealed a more stable structure in R1. Furthermore, the microbial community in R1 interacted more closely with each other and contained more keystone genera. Overall, this study provides a feasible method for improving the biotransformation of azo dyes, thus providing support for practical applications in wastewater treatment projects.


Asunto(s)
Compuestos Azo , Colorantes , Humanos , Compuestos Azo/química , Anaerobiosis , Colorantes/química , Biopelículas , Reactores Biológicos
2.
Bioresour Technol ; 374: 128656, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36690216

RESUMEN

Osmotic stress priming (OSP) was an effective management strategy for improving microbial acclimation to salt stress. In this study, the interaction between pollutants and microbiota, and microbial osmoregulation were investigated triggered by OSP (alternately increasing salinity and organic loading). Results showed that OSP significantly improved COD removal from 31.53 % to 67.99 % and mitigated the terephthalate inhibition produced by toluate, decreasing from 1908.08 mg/L to 837.16 mg/L compared with direct priming. Due to an increase in salinity, Pelotomaculum and Mesotoga were enriched to facilitate terephthalate degradation and syntrophic acetate oxidation (SAO). And organic load promoted acetate formation through syntrophic metabolism of Syntrophorhabdus/Pelotomaculum and SAO-dependent hydrogenotrophic methanogenesis. K+ absorbing, proline and trehalose synthesis participated in osmoregulation at 0.5 % salinity, while only ectoine alleviated intracellular osmolarity under 1.0 % salinity with OLR of 0.44 kg COD /m3. This study provided in-depth insight for microbial acclimation process of anaerobic priming of saline wastewater.


Asunto(s)
Salinidad , Purificación del Agua , Presión Osmótica , Aclimatación , Anaerobiosis , Purificación del Agua/métodos , Reactores Biológicos
3.
Chemosphere ; 311(Pt 2): 137008, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36377119

RESUMEN

Little research was focused on the anerobic degradation of refractory para-toluic acid at present. Thus, temperature-regulated anaerobic system of para-toluic acid fed as sole substrate was built and investigated via microbiota, metabolism intermediates, and function prediction in this study. Results showed that low methane yield was produced in para-toluic acid anaerobic system at alkaline condition. And the causes were owing to anaerobic methane oxidation and potentially H2S production at 37 °C, N2 production by denitrification before starvation and propionic acid occurrence after starvation at 27 °C, and production of N2 and free ammonia, and accumulation of acetic acid at 52 °C. Simultaneously, hydrogenotrophic methanogenesis dependent on syntrophic acetate oxidation (SAO) was predominant, facilitating the removal of para-toluic acid at 52 °C. Moreover, the key intermediate changed from phthalic acid of 37 °C and 27 °C before starvation to terephthalic acid of 52 °C. Starvation promoted removal of para-toluic acid through benzoyl-CoA pathway by Syntrophorhabdus, enrichment of syntrophic propionate degraders of Bacteroidetes and Ignavibacteriaceae, and increase of methylotrophic methanogens.

4.
Environ Sci Ecotechnol ; 8: 100111, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156993

RESUMEN

Chlorination has been intensively investigated for use in water disinfection and pollutant elimination due to its efficacy and convenience; however, the generation and transportation of chlorine and hypochlorite are energy-consuming and complicated. In this study, a novel binary photosensitizer consisting of anthraquinone-2-sulfonate (AQ2S) and graphene was synthesized via a π-π stack adsorption method; this compound could allow for the chlorination of organic pollutants using on-site chlorine generation. In this photosensitive degradation process, sulfapyridine (SPY) was selected as a model pollutant and was decomposed by the reactive species (Cl2 •-, Cl• and O2 •-) generated during the photosensitive oxidation of chloride. The synthesized AQ2S/graphene exhibited superior activity, and the degradation rate of SPY was over 90 % after 12 h of visible light irradiation with a kinetic constant of 0.2034h-1. Results show that 20 mg AQ2S/GR at a 21 % weight percentage of AQ2S in a pH 7 SPY solution with 1 mol/L Cl- achieved the highest kinetics rate at 0.353 h-1. Free radical trapping experiments demonstrated that Cl2 •- and O2 •- were the dominant species involved in SPY decomposition under solar light. The reusability and stability of this composite were verified by conducting a cycle experiment over five successive runs. The capacity of photodegradation still remained over 90 % after these 5 runs. The current study provides an energy-efficient and simple-operational approach for water phase SPY control.

5.
Molecules ; 23(2)2018 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29438302

RESUMEN

To obtain novel structural antioxidants that have different antioxidant mechanisms, four 2-(alkylthio)-N-(4-(phenylamino)phenyl)acetamides 2a-d as dual functional antioxidants are designed, synthesized, and confirmed by ¹H-NMR, FTIR, MS, and elemental analysis. The antioxidant behavior of compounds 2a-d as additives of base oil triisodecyl trimellitate (TIDTM) is evaluated by non-isothermal and isothermal DSC analyses. The results showed all compounds can greatly increase the incipient oxidation temperature (IOT) and oxidation induction time (OIT) of TIDTM, especially, compound 2c exhibited an OIT value of 72.5 min at 230 °C, which is almost 28 times the length of TIDTM. Moreover, compounds 2a-d do not affect the tribological performance of TIDTM. The mechanism of antioxidants involved an intramolecular synergism are proposed. This work demonstrates compound 2c can be used as a novel potential antioxidant additive of TIDTM; in addition, it would inspire the emergence of highly potent antioxidants with different antioxidant mechanisms.


Asunto(s)
Acetamidas/síntesis química , Antioxidantes/síntesis química , Difenilamina/análogos & derivados , Lubricantes/síntesis química , Azufre/química , Acetamidas/química , Antioxidantes/química , Fricción , Lubricantes/química , Ensayo de Materiales , Oxidación-Reducción , Ácidos Tricarboxílicos/química
6.
J Hazard Mater ; 349: 10-17, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29414740

RESUMEN

Clinically relevant antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in bioaerosols have become a greater threat to public health. However, few reports have shown that ARB and ARGs were found in the atmosphere. High-throughput sequencing applied to environmental sciences has enhanced the exploration of microbial populations in atmospheric samples. Thus, five nosocomial bioaerosols were collected, and the dominant microbial and pathogenic microorganisms were identified by high-throughput sequencing in this study. The results suggested that the dominant microorganisms at the genus level were Massilia, Sphingomonas, Methylobacterium, Methylophilus, Micrococcineae, and Corynebacterineae. The most abundant pathogenic microorganisms were Staphylococcus saprophyticus, Corynebacterium minutissimum, Streptococcus pneumoniae, Escherichia coli, Arcobacter butzleri, Aeromonas veronii, Pseudomonas aeruginosa, and Bacillus cereus. The relationship between microbial communities and environmental factors was evaluated with canonical correspondence analysis (CCA). Meanwhile, differences in the pathogenic bacteria between bioaerosols and dust in a typical hospital was investigated. Furthermore, cultivable Staphylococcus isolates with multi-drug resistance phenotype (>3 antibiotics) in the inpatient departments were much higher than those in the transfusion area and out-patient departments, possibly attributed to the dense usage of antibiotics in inpatient departments. The results of this study might be helpful for scientifically air quality control in hospitals.


Asunto(s)
Microbiología del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Bacterias/aislamiento & purificación , Hospitales Urbanos , Microbiota , Aerosoles , Contaminación del Aire/análisis , Bacterias/genética , China , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Genes Bacterianos , Departamentos de Hospitales
7.
Front Microbiol ; 7: 1891, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27990136

RESUMEN

Recovering microorganisms from environmental samples is a crucial primary step for understanding microbial communities using molecular ecological approaches. It is often challenging to harvest microorganisms both efficiently and unselectively, guaranteeing a similar microbial composition between original and separated biomasses. A magnetic nanoparticles (MNPs) based method was developed to effectively separate microbial biomass from glass fiber pulp entrapped bacteria. Buffering pH and nanoparticle silica encapsulation significantly affected both biomass recovery and microbial selectivity. Under optimized conditions (using citric acid coated Fe3O4, buffering pH = 2.2), the method was applied in the pretreatment of total suspended particle sampler collected bioaerosols, the effective volume for DNA extraction was increased 10-folds, and the overall method detection limit of microbial contaminants in bioaerosols significantly decreased. A consistent recovery of the majority of airborne bacterial populations was demonstrated by in-depth comparison of microbial composition using 16S rRNA gene high-throughput sequencing. Surface charge was shown as the deciding factor for the interaction between MNPs and microorganisms, which helps developing materials with high microbial selectivity. To our knowledge, this study is the first report using MNPs to separate diverse microbial community unselectively from a complex environmental matrix. The technique is convenient and sensitive, as well as feasible to apply in monitoring of microbial transport and other related fields.

8.
Sci Total Environ ; 572: 681-687, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27503629

RESUMEN

Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS: Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination.


Asunto(s)
Microbiología del Aire , Farmacorresistencia Microbiana/genética , Aves de Corral , Contaminación del Aire/análisis , Animales , China , Monitoreo del Ambiente/métodos , Estiércol
9.
Microbes Environ ; 29(3): 261-8, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24964811

RESUMEN

Denitrifying phosphorus removal is an attractive wastewater treatment process due to its reduced carbon source demand and sludge minimization potential. Two lab-scale sequencing batch reactors (SBRs) were operated in alternating anaerobic-anoxic (A-A) or anaerobic-oxic (A-O) conditions to achieve denitrifying enhanced biological phosphate removal (EBPR) and traditional EBPR. No significant differences were observed in phosphorus removal efficiencies between A-A SBR and A-O SBR, with phosphorus removal rates being 87.9% and 89.0% respectively. The community structures in denitrifying and traditional EBPR processes were evaluated by high-throughput sequencing of the PCR-amplified partial 16S rRNA genes from each sludge. The results obtained showed that the bacterial community was more diverse in A-O sludge than in A-A sludge. Taxonomy and ß-diversity analyses indicated that a significant shift occurred in the dominant microbial community in A-A sludge compared with the seed sludge during the whole acclimation phase, while a slight fluctuation was observed in the abundance of the major taxonomies in A-O sludge. One Dechloromonas-related OTU outside the 4 known Candidatus "Accumulibacter" clades was detected as the main OTU in A-A sludge at the stationary operation, while Candidatus "Accumulibacter" dominated in A-O sludge.


Asunto(s)
Bacterias/metabolismo , Restauración y Remediación Ambiental/métodos , Fósforo/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodegradación Ambiental , Biodiversidad , Reactores Biológicos/microbiología , Desnitrificación , Datos de Secuencia Molecular , Oxígeno/metabolismo , Filogenia , Aguas del Alcantarillado/microbiología
11.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-686125

RESUMEN

To increase the biotransfomation efficiency from the orotic acid to the uridine 5'-monophosphate(UMP),URA5 gene encoding orotate phosphoribosytransferase was amplified from Saccharomyces cerevisiae BY4742 by PCR,then it was inserted into the expression vector pYX212(contained orotidine monophosphate decarboxylase gene URA3)and the pYX212-URA5 was transformed into Saccharomyces cerevisiae BJX12 by electroporation.The recombinant strain was elementarily used to convert orotic acid to UMP.The results showed that pYX212-URA5/BJX12 could accumulate 7mmol/L UMP from 32mmol/L orotic acid in 26h,significantly higher than both control groups pYX212/BJX12(2.7mmol/L) and BJX12(2.4 mmol/L).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA