Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; 43(22): e2100828, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35032076

RESUMEN

In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45°  between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted lowest unoccupied molecular orbital by 0.4 eV as well as blueshifted absorption by up to 150 nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954 V compared to 4.47% and 0.739 V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE.

2.
Dalton Trans ; 50(28): 9871-9880, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34195721

RESUMEN

Cyclometalated iridium(iii) complexes have been investigated as promising electron donor (D) materials in organic solar cells (OSCs) due to their unique octahedral configuration for optimized morphology and their significantly long lifetimes potentially for enhanced exciton dissociation. However, the application as electron acceptor (A) materials has never been reported. In order to fill this blank, herein, two cyclometalated heteroleptic Ir complexes, TRIr and 2TRIr, based on electron donating-accepting type organic ligands with different π-conjugation lengths are reported as electron acceptor materials in comparison with their corresponding main organic ligands. The two Ir complexes exhibit suitable HOMO/LUMO energy levels of -5.55/-3.47 eV and -5.44/-3.48 eV, which are ∼0.1 eV higher in the HOMO and ∼0.15 eV deeper in the LUMO than the TR and 2TR ligands, respectively. 2TRIr with extended ligand π-conjugation displays a poor triplet feature, while TRIr demonstrates obvious metal-to-ligand charge transfer (MLCT) transition absorption, with a triplet component photoluminescence (PL) lifetime of 85 ns in neat films. When blended with PBDB-T in bulk heterojunction (BHJ) OSCs, the power conversion efficiencies (PCEs) are 2-3 times higher than their relevant ligands, with values of 1.20% and 1.62% for TRIr and 2TRIr, and 0.58% and 0.47% for the TR and 2TR ligand-based devices, respectively. TRIr and 2TRIr based active layer blends exhibit poorer hole and electron mobilities, whereas compared with their relatively linear planar ligands, both of the two octahedral Ir complexes exhibit an optimized surface morphology for less bimolecular recombination and more efficient exciton dissociation, thus contributing to improved photovoltaic performance.

3.
Front Chem ; 7: 372, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316965

RESUMEN

Indacenodithiophene (IDT) is a promising building block for designing organic semiconductors. In this work, a new pentacyclic ladder-type arene IDMe was designed and synthesized by introducing methyl substitution on the short-axis of IDT. Two non-fullerene electron acceptors (IDIC and ID-MeIC) without and with methyl substitution were designed and synthesized for further study. Compared with IDIC, ID-MeIC with methyl substitution on the short-axis of IDT shows smaller bandgap, stronger extinction coefficient, and better crystallinity. Besides, PBDB-T: ID-MeIC blend film shows more efficient exciton generation and dissociation and more balanced charge transport mobility. Therefore, polymer solar cells based on PBDB-T: ID-MeIC can achieve better photovoltaic performance with a PCE of 6.46% and substantial increase in J SC to 14.13 mA cm-2 compared to 4.94% and 9.10 mA cm-2 of PBDB-T: IDIC. These results suggest that short-axis substitution on multi-fused ladder-type arenes, such as IDT is an effective way to change the optical and electronic properties of the organic semiconductors for high-performance OPVs.

4.
Chem Commun (Camb) ; 55(18): 2640-2643, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30742191

RESUMEN

Organometallic compounds as photoactive materials are relatively new in organic solar cells. Upon cyclometalation, the octahedral heteroleptic Ir complex TBzIr exhibits significantly enhanced optical-absorption and improved film-morphology compared to the planar organic 2-(5''-hexyl-[2,2':5',2''-terthiophen]-5-yl)benzo[d]thiazole (TBz) ligand. Thus, a dramatically improved power conversion efficiency (PCE) from ∼0 to 3.81% is attained when combined with PC71BM.

5.
Nat Commun ; 9(1): 1754, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717123

RESUMEN

Organocatalytic polymerization reactions have a number of advantages over their metal-catalyzed counterparts, including environmental friendliness, ease of catalyst synthesis and storage, and alternative reaction pathways. Here we introduce an organocatalytic polymerization method called benzylic chloromethyl-coupling polymerization (BCCP). BCCP is catalyzed by organocatalysts not previously employed in polymerization processes (sulfenate anions), which are generated from bench-stable sulfoxide precatalysts. The sulfenate anion promotes an umpolung polycondensation via step-growth propagation cycles involving sulfoxide intermediates. BCCP represents an example of an organocatalyst that links monomers by C=C double bond formation and offers transition metal-free access to a wide variety of polymers that cannot be synthesized by traditional precursor routes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...