Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 240
1.
J Funct Biomater ; 15(4)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38667569

Angiogenesis is vital for bone fracture healing and plays a significant role in the fate of orthopedic implants. The growth and maintenance of new blood vessels at the fracture site of patients is essential, which promotes the clinical outcome of plasma sprayed Ti (PST) coated orthopedic implants. In order to endow the PST coating with pro-angiogenic effects, deferoxamine-loaded chitosan-based hydrogel was fabricated on the coating surface. Polydopamine-modified chitosan (CS/PDA) hydrogel exhibited enhanced bonding strength to PST coatings as evidenced by scratch test. The deferoxamine-loaded CS/PDA (CS/PDA-DFO) exhibited a sustained drug-release property, and the cumulative concentration of released DFO reached 20.21 µg/mL on day 7. PST-CS/PDA with higher wettability and active group quantity enhanced the viability and adhesion characteristics of human umbilical vein endothelial cells (HUVECs) and upregulated the secretion level of nitric oxide and vascular endothelial growth factor. Moreover, the introduction of DFO in PST-CS/PDA further enhanced the pro-angiogenic effects. Above all, this study offers a novel approach for developing hydrogel coating on orthopedic implants showing enhanced bonding strength and pro-angiogenic effects.

2.
Angew Chem Int Ed Engl ; : e202404493, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38687277

Timely detection of early-stage cancer holds immense potential in enhancing prognostic outcomes. There is an increasing desire for versatile tools to enable simple, sensitive, and cost-effective cancer detection. By exploiting the extraintestinal metabolic inertness and efficiency renal clearance of sucrose, we designed a liposome nanosensor using sucrose as a messenger to convert tumor-specific esterase activity into glucose meter readout, enabling economical and sensitive uri-nalysis for cancer detection in point-of-care testing (POCT). Our results demonstrate that the nanosensors exhibited sig-nificant signal differences between tumor-bearing and healthy mice in both orthotopic and metastatic tumor models. Ad-ditionally, efficient elimination of the nanosensors through the hepatobiliary pathway was observed with no significant toxicity. Such a non-invasive diagnostic modality significantly assists in personalized pharmacological treatment and fol-low-up efficacy assessment. We envision that this modular liposome nanosensor platform might be applied for economi-cally detecting diverse diseases via a simple urinary test.

3.
Acta Pharm Sin B ; 14(3): 1150-1165, 2024 Mar.
Article En | MEDLINE | ID: mdl-38486998

Aside from antibodies, peptides show great potential as immune checkpoint inhibitors (ICIs) due to several advantages, such as better tumor penetration and lower cost. Lymphocyte-activation gene 3 (LAG-3) is an immune checkpoint which can induce T cell dysfunction through interaction with its soluble ligand fibrinogen like protein-1 (FGL1). Here, we found that LAG-3 expression was higher than programmed cell death protein 1 (PD-1) in multiple human cancers by TCGA databases, and successfully identified a LAG-3 binding peptide LFP-6 by phage display bio-panning, which specifically blocks the interaction of LAG-3/FGL1 but not LAG-3/MHC-II. Subsequently, d-amino acids were introduced to substitute the N- and C-terminus of LFP-6 to obtain the proteolysis-resistant peptide LFP-D1, which restores T cell function in vitro and inhibits tumor growth in vivo. Further, a bispecific peptide LFOP targeting both PD-1/PD-L1 and LAG-3/FGL1 was designed by conjugating LFP-D1 with PD-1/PD-L1 blocking peptide OPBP-1(8-12), which activates T cell with enhanced proliferation and IFN-γ production. More importantly, LFOP combined with radiotherapy significantly improve the T cell infiltration in tumor and elevate systemic antitumor immune response. In conclusion, we developed a novel peptide blocking LAG-3/FGL1 which can restore T cell function, and the bispecific peptide synergizes with radiotherapy to further enhance the antitumor immune response.

4.
ACS Nano ; 18(12): 9031-9042, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38470458

Cuproptosis has drawn enormous attention in antitumor material fields; however, the responsive activation of cuproptosis against tumors using nanomaterials with high atom utilization is still challenging. Herein, a copper-based nanoplatform consisting of acid-degradable copper hydride (CuH) nanoparticles was developed via a microfluidic synthesis. After coating with tumor-targeting hyaluronic acid (HA), the nanoplatform denoted as HA-CuH-PVP (HCP) shows conspicuous damage toward tumor cells by generating Cu+ and hydrogen (H2) simultaneously. Cu+ can induce apoptosis by relying on Fenton-like reactions and lead to cuproptosis by causing mitochondrial protein aggregation. Besides, the existence of H2 can enhance both cell death types by causing mitochondrial dysfunction and intracellular redox homeostatic disorders. In vivo experimental results further exhibit the desirable potential of HCP for killing tumor cells and inhibiting lung metastases, which will broaden the horizons of designing copper-based materials triggering apoptosis and cuproptosis for better antitumor efficacy.


Copper , Nanoparticles , Microfluidics , Apoptosis , Hyaluronic Acid , Hydrogen
5.
J Transl Med ; 22(1): 321, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38555418

BACKGROUND: Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM. METHODS: This study developed two liver metastasis-associated prognostic signatures based on differentially expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in vivo experiments were performed to verify the efficacy of these compounds. RESULTS: These two prognostic models exhibited superior performance compared to previously reported ones. Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver metastasis mouse model. CONCLUSIONS: This study highlights the significance of developing specialized prognostication approaches and investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response model provides a new drug discovery strategy for translational medicine in precision oncology.


Colorectal Neoplasms , Liver Neoplasms , Animals , Mice , Humans , Precision Medicine , Prognosis , Liver Neoplasms/genetics , Drug Discovery , Colorectal Neoplasms/genetics
6.
Micromachines (Basel) ; 15(3)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38542641

Machining special microstructures on the surface of silicon nitride ceramics helps improve their service performance. However, the high brittleness and low fracture toughness of silicon nitride ceramics make it extremely difficult to machine microstructures on their surface. In this study, a femtosecond laser is used to machine parallel grooved microstructures on the surface of silicon nitride ceramics. The effects of the laser polarization angle, laser single pulse energy, scanning line spacing, and laser scan numbers on the surface morphology and geometric characteristics of grooved microstructures are researched. It is found that a greater angle between the direction of the scanning path and laser polarization is helpful to obtain a smoother surface. As the single pulse energy increases, debris and irregular surface structures will emerge. Increasing the laser scan line spacing leads to clearer and more defined parallel grooved microstructures. The groove depth increases with the increase in the scan numbers. However, when a certain number of scans is reached, the depth will not increase further. This study serves as a valuable research foundation for the femtosecond laser processing of silicon nitride ceramic materials.

7.
ACS Nano ; 18(11): 7923-7936, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38445625

Tumor whole cell, carrying a complete set of tumor-associated antigens and tumor-specific antigens, has shown great potential in the construction of tumor vaccines but is hindered by the complex engineering means and limited efficacy to cause immunity. Herein, we provided a strategy for the self-mineralization of autologous tumor cells with palladium ions in microfluidic droplets, which endowed the engineered cells with both immune and catalytic functions, to establish a bioorthogonally catalytic tumor whole-cell vaccine. This vaccine showed strong inhibition both in the occurrence and recurrence of tumor by invoking the immediate antitumor immunity and building a long-term immunity.


Cancer Vaccines , Neoplasms , Humans , Microfluidics , Immunotherapy , Neoplasms/therapy , Antigens, Neoplasm
8.
Cell Commun Signal ; 22(1): 173, 2024 03 11.
Article En | MEDLINE | ID: mdl-38462636

BACKGROUND: Targeting the tumor microenvironment (TME) has emerged as a promising strategy in cancer treatment, particularly through the utilization of immune checkpoint blockade (ICB) agents such as PD-1/PD-L1 inhibitors. Despite partial success, the presence of tumor-associated macrophages (TAMs) contributes to an immunosuppressive TME that fosters tumor progression, and diminishes the therapeutic efficacy of ICB. Blockade of the CD47/SIRPα pathway has proven to be an effective intervention, that restores macrophage phagocytosis and yields substantial antitumor effects, especially when combined with PD-1/PD-L1 blockade. Therefore, the identification of small molecules capable of simultaneously blocking CD47/SIRPα and PD-1/PD-L1 interactions has remained imperative. METHODS: SMC18, a small molecule with the capacity of targeting both SIRPα and PD-L1 was obtained using MST. The efficiency of SMC18 in interrupting CD47/SIRPα and PD-1/PD-L1 interactions was tested by the blocking assay. The function of SMC18 in enhancing the activity of macrophages and T cells was tested using phagocytosis assay and co-culture assay. The antitumor effects and mechanisms of SMC18 were investigated in the MC38-bearing mouse model. RESULTS: SMC18, a small molecule that dual-targets both SIRPα and PD-L1 protein, was identified. SMC18 effectively blocked CD47/SIRPα interaction, thereby restoring macrophage phagocytosis, and disrupted PD-1/PD-L1 interactions, thus activating Jurkat cells, as evidenced by increased secretion of IL-2. SMC18 demonstrated substantial inhibition of MC38 tumor growths through promoting the infiltration of CD8+ T and M1-type macrophages into tumor sites, while also priming the function of CD8+ T cells and macrophages. Moreover, SMC18 in combination with radiotherapy (RT) further improved the therapeutic efficacy. CONCLUSION: Our findings suggested that the small molecule compound SMC18, which dual-targets the CD47/SIRPα and PD-1/PD-L1 pathways, could be a candidate for promoting macrophage- and T-cell-mediated phagocytosis and immune responses in cancer immunotherapy.


Immune Checkpoint Inhibitors , Neoplasms , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , CD47 Antigen/metabolism , B7-H1 Antigen , Phagocytosis , Immunotherapy , Neoplasms/drug therapy , Neoplasms/pathology , Tumor Microenvironment
9.
Acta Pharm Sin B ; 14(2): 795-807, 2024 Feb.
Article En | MEDLINE | ID: mdl-38322334

Recent innovations in nanomaterials inspire abundant novel tumor-targeting CRISPR-based gene therapies. However, the therapeutic efficiency of traditional targeted nanotherapeutic strategies is limited by that the biomarkers vary in a spatiotemporal-dependent manner with tumor progression. Here, we propose a self-amplifying logic-gated gene editing strategy for gene/H2O2-mediated/starvation multimodal cancer therapy. In this approach, a hypoxia-degradable covalent-organic framework (COF) is synthesized to coat a-ZIF-8 in which glucose oxidase (GOx) and CRISPR system are packaged. To intensify intracellular redox dyshomeostasis, DNAzymes which can cleave catalase mRNA are loaded as well. When the nanosystem gets into the tumor, the weakly acidic and hypoxic microenvironment degrades the ZIF-8@COF to activate GOx, which amplifies intracellular H+ and hypoxia, accelerating the nanocarrier degradation to guarantee available CRISPR plasmid and GOx release in target cells. These tandem reactions deplete glucose and oxygen, leading to logic-gated-triggered gene editing as well as synergistic gene/H2O2-mediated/starvation therapy. Overall, this approach highlights the biocomputing-based CRISPR delivery and underscores the great potential of precise cancer therapy.

10.
Sci China Life Sci ; 67(5): 996-1009, 2024 May.
Article En | MEDLINE | ID: mdl-38324132

The immune checkpoint TIGIT/PVR blockade exhibits significant antitumor effects through activation of NK and CD8+ T cell-mediated cytotoxicity. Immune checkpoint blockade (ICB) could induce tumor ferroptosis through IFN-γ released by immune cells, indicating the synergetic effects of ICB with ferroptosis in inhibiting tumor growth. However, the development of TIGIT/PVR inhibitors with ferroptosis-inducing effects has not been explored yet. In this study, the small molecule Hemin that could bind with TIGIT to block TIGIT/PVR interaction was screened by virtual molecular docking and cell-based blocking assay. Hemin could effectively restore the IL-2 secretion from Jurkat-hTIGIT cells. Hemin reinvigorated the function of CD8+ T cells to secrete IFN-γ and the elevated IFN-γ could synergize with Hemin to induce ferroptosis in tumor cells. Hemin inhibited tumor growth by boosting CD8+ T cell immune response and inducing ferroptosis in CT26 tumor model. More importantly, Hemin in combination with PD-1/PD-L1 blockade exhibited more effective antitumor efficacy in anti-PD-1 resistant B16 tumor model. In summary, our finding indicated that Hemin blocked TIGIT/PVR interaction and induced tumor cell ferroptosis, which provided a new therapeutic strategy to combine immunotherapy and ferroptosis for cancer treatment.


Ferroptosis , Hemin , Immunotherapy , Receptors, Immunologic , Hemin/pharmacology , Receptors, Immunologic/metabolism , Animals , Humans , Ferroptosis/drug effects , Mice , Immunotherapy/methods , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/therapy , Molecular Docking Simulation , Jurkat Cells , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/pharmacology , Drug Synergism , Interferon-gamma/metabolism , Interferon-gamma/immunology , Receptors, Virus/metabolism , Mice, Inbred BALB C
11.
Immun Inflamm Dis ; 12(1): e1098, 2024 Jan.
Article En | MEDLINE | ID: mdl-38270302

AIMS: Growing clinical evidence suggests that not all patients with rheumatoid arthritis (RA) benefit to the same extent by treatment with tripterygium glycoside (TG), which highlights the need to identify RA-related genes that can be used to predict drug responses. In addition, single genes as markers of RA are not sufficiently accurate for use as predictors. Therefore, there is a need to identify paired expression genes that can serve as biomarkers for predicting the therapeutic effects of TG tablets in RA. METHODS: A total of 17 pairs of co-expressed genes were identified as candidates for predicting an RA patient's response to TG therapy, and genes involved in the Lnc-ENST00000602558/GF1 axis were selected for that purpose. A partial-least-squares (PLS)-based model was constructed based on the expression levels of Lnc-ENST00000602558/IGF1 in peripheral blood. The model showed high efficiency for predicting an RA patient's response to TG tablets. RESULTS: Our data confirmed that genes co-expressed in the Lnc-ENST00000602558/IGF1 axis mediate the efficacy of TG in RA treatment, reduce tumor necrosis factor-α induced IGF1 expression, and decrease the inflammatory response of MH7a cells. CONCLUSION: We found that genes expressed in the Lnc-ENST00000602558/IGF1 axis may be useful for identifying RA patients who will not respond to TG treatment. Our findings provide a rationale for the individualized treatment of RA in clinical settings.


Arthritis, Rheumatoid , Glycosides , Humans , Glycosides/therapeutic use , Tripterygium , Tumor Necrosis Factor-alpha , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Gene Expression , Insulin-Like Growth Factor I/genetics
12.
Nano Lett ; 24(4): 1081-1089, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38227962

Oral administration of probiotics orchestrates the balance between intestinal microbes and the immune response. However, effective delivery and in situ colonization are limited by the harsh environment of the gastrointestinal tract. Herein, we provide a microfluidics-derived encapsulation strategy to address this problem. A novel synergistic delivery system composed of EcN Nissle 1917 and prebiotics, including alginate sodium and inulin gel, for treating inflammatory bowel disease and colitis-associated colorectal cancer is proposed. We demonstrated that EcN@AN microparticles yielded promising gastrointestinal resistance for on-demand probiotic delivery and colon-retentive capability. EcN@AN microparticles efficiently ameliorated intestinal inflammation and modulated the gut microbiome in experimental colitis. Moreover, the prebiotic composition of EcN@AN enhanced the fermentation of relative short-chain fatty acid metabolites, a kind of postbiotics, to exert anti-inflammatory and tumor-suppressive effects in murine models. This microfluidcis-based approach for the coordinated delivery of probiotics and prebiotics may have broad implications for gastrointestinal bacteriotherapy applications.


Colitis , Probiotics , Animals , Mice , Prebiotics , Microfluidics , Colitis/therapy , Probiotics/therapeutic use , Immunity
13.
Cell Commun Signal ; 22(1): 77, 2024 01 30.
Article En | MEDLINE | ID: mdl-38291457

AXIN1, has been initially identified as a prominent antagonist within the WNT/ß-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/ß-catenin, Hippo, TGFß, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.


Wnt Signaling Pathway , beta Catenin , Animals , Gene Ontology , Axin Protein/genetics , Axin Protein/metabolism , Wnt Signaling Pathway/genetics , Phosphorylation , Proteolysis , beta Catenin/metabolism , Mammals/metabolism
14.
J Hazard Mater ; 466: 133553, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38266589

Vanadium dioxide (VO2) has been used in a variety of products due to its outstanding phase transition properties. However, as potential heavy metal contaminants, the environmental hazards and risks of VO2 should be systematically investigated. Biological nitrogen fixation is one of the most dominant processes in biogeochemical cycle, which is associated with nitrogen-fixing bacteria. In this study, we reported the environmental bio-effects of VO2 micro/nanoparticles on the nitrogen-fixing bacterium Azotobacter vinelandii. VO2 at 10 and 30 mg/L caused severe hazards to A. vinelandii, such as cell apoptosis, oxidative damage, physical damage, genotoxicity, and the loss of nitrogen fixation activity. The up-regulated differentially expressed genes of A. vinelandii were related to stress response, and the down-regulated genes were mainly related to energy metabolism. Surprisingly, VO2 of 10 mg/L decreased the nif gene expression but elevated the vnf gene expression, which enhanced the ability of A. vinelandii to reduce acetylene in anaerobic environment. In addition, under tested conditions, VO2 nanoparticles exhibited insignificantly higher toxicity than VO2 microparticles.


Azotobacter vinelandii , Nitrogen-Fixing Bacteria , Azotobacter vinelandii/genetics , Azotobacter vinelandii/metabolism , Nitrogen Fixation/genetics , Nitrogen/metabolism
15.
Small ; 20(13): e2306947, 2024 Mar.
Article En | MEDLINE | ID: mdl-37972273

As one of promising candidates for large-scale energy-storage systems, Zn-I2 aqueous battery exhibits multifaceted advantages including low cost, high energy/powder density, and intrinsic operational safety, but also suffers from fast self-discharge and short cycle/shelf lifespan associating with I3 - shuttle, Zn dendrite growth, and corrosion. In this paper, the battery's self-discharge rate is successfully suppressed down to an unprecedent level of 17.1% after an ultralong shelf-time of 1 000 h (i.e., 82.9% capacity retention after 41 days open-circuit storage), by means of manipulating solvation structures of traditional ZnSO4 electrolyte via simply adjusting electrolyte concentration. Better yet, the optimized 2.7 m ZnSO4 electrolyte further prolongs the cycle lifespan of the battery up to >10 000 and 43 000 cycles at current density of 1 and 5 A g-1, respectively, thanks to the synthetic benefits from reduced free water content, modified solvation structure and lowered I2 dissolution in the electrolyte. With both long lifespan and ultralow self-discharge, this reliable and affordable Zn-I2 battery may provide a feasible alternative to the centuries-old lead-acid battery.

16.
J Control Release ; 365: 654-667, 2024 Jan.
Article En | MEDLINE | ID: mdl-38030081

Peptide immune checkpoint inhibitors in cancer immunotherapy have attracted great attention recently, but oral delivery of these peptides remains a huge challenge due to the harsh gastrointestinal environment, large molecular size, high hydrophilic, and poor transmembrane permeability. Here, for the first time, a fish oil-based microemulsion was developed for oral delivery of programmed death-1/programmed cell death-ligand 1 (PD-1/PD-L1) blocking model peptide, OPBP-1. The delivery system was characterized, in vitro and in vivo studies were conducted to evaluate its overall implication. As a result, this nutraceutical microemulsion was easily formed without the need of co-surfactants, and it appeared light yellow, transparent, good flowability with a particle size of 152 ± 0.73 nm, with a sustained drug release manner of 56.45 ± 0.36% over 24 h and a great stability within the harsh intestinal environment. It enhanced intestinal drug uptake and transportation over human intestinal epithelial Caco-2 cells, and drastically elevated the oral peptide bioavailability of 4.1-fold higher than that of OPBP-1 solution. Meanwhile, the mechanism of these dietary droplets permeated over the intestinal enterocytic membrane was found via clathrin and caveolae-mediated endocytic pathways. From the in vivo studies, the microemulsion facilitated the infiltration of CD8+ T lymphocytes in tumors, with increased interferon-γ (IFN-γ) secretion. Thus, it manifested a promising immune anti-tumor effect and significantly inhibited the growth of murine colonic carcinoma (CT26). Furthermore, it was found that the fish oil could induce ferroptosis in tumor cells and exhibited synergistic effect with OPBP-1 for cancer immunotherapy. In conclusion, this fish oil-based formulation demonstrated great potential for oral delivery of peptides with its natural property in reactive oxygen species (ROS)-related ferroptosis of tumor cells, which provides a great platform for functional green oral delivery system in cancer immunotherapy.


Ferroptosis , Neoplasms , Humans , Animals , Mice , Programmed Cell Death 1 Receptor , Caco-2 Cells , Fish Oils , B7-H1 Antigen , Peptides , Immunotherapy , Cell Line, Tumor
18.
Acta Pharm Sin B ; 13(11): 4511-4522, 2023 Nov.
Article En | MEDLINE | ID: mdl-37969728

Developing new therapeutic agents for cancer immunotherapy is highly demanding due to the low response ratio of PD-1/PD-L1 blockade in cancer patients. Here, we discovered that the novel immune checkpoint VISTA is highly expressed on a variety of tumor-infiltrating immune cells, especially myeloid derived suppressor cells (MDSCs) and CD8+ T cells. Then, peptide C1 with binding affinity to VISTA was developed by phage displayed bio-panning technique, and its mutant peptide VS3 was obtained by molecular docking based mutation. Peptide VS3 could bind VISTA with high affinity and block its interaction with ligand PSGL-1 under acidic condition, and elicit anti-tumor activity in vivo. The peptide DVS3-Pal was further designed by d-amino acid substitution and fatty acid modification, which exhibited strong proteolytic stability and significant anti-tumor activity through enhancing CD8+ T cell function and decreasing MDSCs infiltration. This is the first study to develop peptides to block VISTA/PSGL-1 interaction, which could act as promising candidates for cancer immunotherapy.

19.
Angew Chem Int Ed Engl ; 62(50): e202313968, 2023 12 11.
Article En | MEDLINE | ID: mdl-37884479

Macrophage phagocytosis of tumor cells has emerged as an attractive strategy for tumor therapy. Nevertheless, immunosuppressive M2 macrophages in the tumor microenvironment and the high expression of anti-phagocytic signals from tumor cells impede therapeutic efficacy. To address these issues and improve the management of malignant tumors, in this study we developed a gene-editable palladium-based bioorthogonal nanoplatform, consisting of CRISPR/Cas9 gene editing system-linked Pd nanoclusters, and a hyaluronic acid surface layer (HBPdC). This HBPdC nanoplatform exhibited satisfactory tumor-targeting efficiency and triggered Fenton-like reactions in the tumor microenvironment to generate reactive oxygen species for chemodynamic therapy and macrophage M1 polarization, which directly eliminated tumor cells, and stimulated the antitumor response of macrophages. HBPdC could reprogram tumor cells through gene editing to reduce the expression of CD47 and adipocyte plasma membrane-associated protein, thereby promoting their recognition and phagocytosis by macrophages. Moreover, HBPdC induced the activation of sequestered prodrugs via bioorthogonal catalysis, enabling chemotherapy and thereby enhancing tumor cell death. Importantly, the Pd nanoclusters of HBPdC were sufficiently cleared through basic metabolic pathways, confirming their biocompatibility and biosafety. Therefore, by promoting macrophage phagocytosis, the HBPdC system developed herein represents a highly promising antitumor toolset for cancer therapy applications.


Neoplasms , Palladium , Humans , Palladium/pharmacology , Palladium/metabolism , Cell Line, Tumor , Macrophages/metabolism , Phagocytosis , Neoplasms/drug therapy , Neoplasms/metabolism , Tumor Microenvironment/genetics
20.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37754149

Soft fingertips have distinct intrinsic features that allow robotic hands to offer adjustable and manageable stiffness for grasping. The stability of the grasp is determined by the contact stiffness between the soft fingertip and the object. Within this work, we proposed a line vector representation method based on the Winkler Model and investigated the contact stiffness between soft fingertips and objects to achieve control over the gripping force and fingertip displacement of the gripper without the need for sensors integrated in the fingertip. First, we derived the stiffness matrix of the soft fingertip, analyzed the contact stiffness, and constructed the global stiffness matrix; then, we established the grasp stiffness matrix based on the contact stiffness model, allowing for the analysis and evaluation of the soft fingertip's manipulating process. Finally, our experiment demonstrated that the variation in object orientation caused by external forces can indicate the contact force status between the fingertip and the object. This contact force status is determined by the contact stiffness. The position error between the theoretical work and tested data was less than 9%, and the angle error was less than 5.58%. The comparison between the theoretical contact stiffness and the experimental results at the interface indicate that the present model for the contact stiffness is appropriate and the theoretical contact stiffness is consistent with the experiment data.

...