Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39066493

RESUMEN

AIMS: Microbial transformation to modify saponins and enhance their biological activities has received increasing attention in recent years. This study aimed to screen the strain that can biotransform notoginsenoside R1, identify the product and study its biological activity. METHODS AND RESULTS: A lactic acid bacteria strain S165 with glycosidase-producing activity was isolated from traditional Chinese fermented foods, which was identified and grouped according to API 50 CHL kit and 16S rDNA sequence analysis. Subsequently, notoginsenoside R1 underwent a 30-day fermentation period by the strain S165, and the resulting products were analyzed using High-performance liquid chromatography (HPLC), Ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS)/MS, and 13C-Nuclear magnetic resonance (NMR) techniques. Employing a model of Lipopolysaccharide (LPS)-induced damage to Caco-2 cells, the damage of Caco-2 cells was detected by Hoechst 33 258 staining, and the activity of notoginsenoside R1 biotransformation product was investigated by CCK-8 and western blotting assay. The strain S165 was identified as Lactiplantibacillus plantarum and was used to biotransform notoginsenoside R1. Through a 30-day biotransformation, L. plantarum S165 predominantly converts notoginsenoside R1 into 3ß,12ß-dihydroxydammar-(E)-20(22),24-diene-6-O-ß-D-xylopyranosyl-(1→2)-ß-D-glucopyranoside, temporarily named notoginsenoside T6 (NGT6) according to HPLC, UPLC-MS/MS, and 13C-NMR analysis. Results from CCK-8 and Hoechst 33258 staining indicated that the ability notoginsenoside T6 to alleviate the intestinal injury induced by LPS in the Caco-2 cell was stronger than that of notoginsenoside R1. In addition, Western blotting result showed that notoginsenoside T6 could prevent intestinal injury by protecting tight junction proteins (Claudin-1, Occludin, and ZO-1). CONCLUSION: Notoginsenoside R1 was biotransformed into the notoginsenoside T6 by L. plantarum S165, and the biotransformed product showed an enhanced intestinal protective effect in vitro.


Asunto(s)
Ginsenósidos , Lipopolisacáridos , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Humanos , Células CACO-2 , Lipopolisacáridos/metabolismo , Fermentación , Biotransformación , Cromatografía Líquida de Alta Presión , Lactobacillus plantarum/metabolismo , Alimentos Fermentados/microbiología
2.
Drug Des Devel Ther ; 18: 1821-1832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38845851

RESUMEN

Aim: Natural medicines possess significant research and application value in the field of atherosclerosis (AS) treatment. The study was performed to investigate the impacts of a natural drug component, notoginsenoside R1, on the development of atherosclerosis (AS) and the potential mechanisms. Methods: Rats induced with AS by a high-fat-diet and vitamin D3 were treated with notoginsenoside R1 for six weeks. The ameliorative effect of NR1 on AS rats was assessed by detecting pathological changes in the abdominal aorta, biochemical indices in serum and protein expression in the abdominal aorta, as well as by analysing the gut microbiota. Results: The NR1 group exhibited a noticeable reduction in plaque pathology. Notoginsenoside R1 can significantly improve serum lipid profiles, encompassing TG, TC, LDL, ox-LDL, and HDL. Simultaneously, IL-6, IL-33, TNF-α, and IL-1ß levels are decreased by notoginsenoside R1 in lowering inflammatory elements. Notoginsenoside R1 can suppress the secretion of VCAM-1 and ICAM-1, as well as enhance the levels of plasma NO and eNOS. Furthermore, notoginsenoside R1 inhibits the NLRP3/Cleaved Caspase-1/IL-1ß inflammatory pathway and reduces the expression of the JNK2/P38 MAPK/VEGF endothelial damage pathway. Fecal analysis showed that notoginsenoside R1 remodeled the gut microbiota of AS rats by decreasing the count of pathogenic bacteria (such as Firmicutes and Proteobacteria) and increasing the quantity of probiotic bacteria (such as Bacteroidetes). Conclusion: Notoginsenoside R1, due to its unique anti-inflammatory properties, may potentially prevent the progression of atherosclerosis. This mechanism helps protect the vascular endothelium from damage, while also regulating the imbalance of intestinal microbiota, thereby maintaining the overall health of the body.


Asunto(s)
Aterosclerosis , Colecalciferol , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ginsenósidos , Inflamación , Ratas Sprague-Dawley , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ginsenósidos/farmacología , Ginsenósidos/administración & dosificación , Ratas , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Aterosclerosis/patología , Dieta Alta en Grasa/efectos adversos , Masculino , Colecalciferol/farmacología , Colecalciferol/administración & dosificación , Inflamación/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo
3.
Plants (Basel) ; 13(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256790

RESUMEN

Head smut is a soil-borne fungal disease caused by Sporisorium reilianum that infects maize tassels and ears. This disease poses a tremendous threat to global maize production. A previous study found markedly different and stably heritable tassel symptoms in some maize inbred lines with Sipingtou blood after infection with S. reilianum. In the present study, 55 maize inbred lines with Sipingtou blood were inoculated with S. reilianum and classified into three tassel symptom types (A, B, and C). Three maize inbred lines representing these classes (Huangzao4, Jing7, and Chang7-2, respectively) were used as test materials to investigate the physiological mechanisms of tassel formation in infected plants. Changes in enzyme activity, hormone content, and protein expression were analyzed in all three lines after infection and in control plants. The activities of peroxidase (POD), superoxide dismutase (SOD), and phenylalanine-ammonia-lyase (PAL) were increased in the three typical inbred lines after inoculation. POD and SOD activities showed similar trends between lines, with the increase percentage peaking at the V12 stage (POD: 57.06%, 63.19%, and 70.28% increases in Huangzao4, Jing7, and Chang7-2, respectively; SOD: 27.01%, 29.62%, and 47.07% in Huangzao4, Jing7, and Chang7-2, respectively. These were all higher than in the disease-resistant inbred line Mo17 at the same growth stage); this stage was found to be key in tassel symptom formation. Levels of gibberellic acid (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) were also altered in the three typical maize inbred lines after inoculation, with changes in GA3 and IAA contents tightly correlated with tassel symptoms after S. reilianum infection. The differentially expressed proteins A5H8G4, P09233, and Q8VXG7 were associated with changes in enzyme activity, whereas P49353, P13689, and P10979 were associated with changes in hormone contents. Fungal infection caused reactive oxygen species (ROS) and nitric oxide (NO) bursts in the three typical inbred lines. This ROS accumulation caused biofilm disruption and altered host signaling pathways, whereas NO signaling triggered strong secondary metabolic responses in the host and altered the activities of defense-related enzymes. These factors together resulted in the formation of varying tassel symptoms. Thus, interactions between S. reilianum and susceptible maize materials were influenced by a variety of signals, enzymes, hormones, and metabolic cycles, encompassing a very complex regulatory network. This study preliminarily identified the physiological mechanisms leading to differences in tassel symptoms, deepening our understanding of S. reilianum-maize interactions.

4.
Fitoterapia ; 172: 105769, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065234

RESUMEN

Minor ginsenosides have been proven to have higher pharmacological activity than the major ginsenosides. The transformation of major ginsenosides to minor ginsenosides by lactic acid bacteria was considered to be a promising method. Therefore, this study focuses on utilizing glycosidase-producing Lactiplantibacillus plantarum GLP40 to transform total ginsenosides (TG) and increase the content of minor ginsenosides, as well as investigate the neuroprotective effects of fermented total ginsenosides (FTG). After 21d fermentation, the transformation products were purified using D101 macroporous resin column chromatography, and identified by HPLC and LC-MS analyses. The neuroprotective effect of FTG was evaluated using MPTP-induced neural injury mice model. Lact. plantarum GLP40 fermentation increased the contents of minor ginsenosides in TG, such as Rg3, Rh2, CK, and Rk3. FTG showed stronger alleviation of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Hydrochloride (MPTP) induced memory loss and dyskinesia in mice, and inhibited tyrosine hydroxylase (TH) depletion and ionized calcium binding adapter molecule 1 (Iba-1) production than TG. Further, FTG significantly increased serum IL-10 levels and inhibited the expression of pro-inflammatory cytokines compared to TG. Moreover, FTG treatment activated the anti-apoptotic PI3K/AKT/mTOR signaling pathway and inhibited the expression of the inflammatory NF-κB/COX-2/iNOS pathway. In conclusion, Lact. plantarum GLP40 fermentation enhances the neuroprotective effects of total ginsenosides by increasing minor ginsenosides. FTG protected MPTP induced neural injury in mice by regulating inflammation and cell apoptosis signaling pathways.


Asunto(s)
Ginsenósidos , Fármacos Neuroprotectores , Ratones , Animales , Fármacos Neuroprotectores/farmacología , Ginsenósidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Estructura Molecular , Citocinas/metabolismo
5.
RSC Adv ; 13(42): 29773-29783, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37829710

RESUMEN

Notoginsenoside R2 is a crucial active saponin in Panax notoginseng (Burk.) F. H. Chen, but its natural content is relatively low. In this study, we investigated the biotransformation of notoginsenoside R1 to 20(S/R)-notoginsenoside R2 using Lactiplantibacillus plantarum S165, compared the inhibitory effects on cancer cell proliferation and conducted a mechanistic study. Notoginsenoside R1 was transformed using Lactiplantibacillus plantarum S165 at 37 °C for 21 days. The fermentation products were identified using a combination of HPLC, UPLC-MS/MS, and 13C-NMR methods. The inhibition effects of 20(S/R)-notoginsenoside R2 on H22 hepatoma cells were assessed by CCK-8 and TUNEL assays, and the underlying mechanism was investigated by Western blotting. Lactiplantibacillus plantarum S165 could effectively transform notoginsenoside R1 to 20(S/R)-notoginsenoside R2 with a conversion yield of 82.85%. Our results showed that 20(S/R)-notoginsenoside R2 inhibited H22 hepatoma cells proliferation and promoted apoptosis. The apoptosis of H22 hepatoma cells was promoted by 20(S/R)-notoginsenoside R2 through the blockade of the PI3K/AKT/mTOR signaling pathway. The biotransformation method used in this study resulted in the production of 20(S)-notoginsenoside R2 and 20(R)-notoginsenoside R2 from notoginsenoside R1, and the anti-tumor activity of the transformed substance markedly improved.

6.
Artículo en Inglés | MEDLINE | ID: mdl-37639209

RESUMEN

Probiotics are widely recognized for their ability to prevent and therapy antibiotic-associated diarrhea (AAD). This study was designed to evaluate Lactiplantibacillus plantarum ELF051 ability to prevent colon inflammation and its effect on gut microbial composition in a mouse model of AAD. The mice were intragastrically administered triple antibiotics for 7 days and then subjected to L. plantarum ELF051 for 14 days. The administration of L. plantarum ELF051 ameliorated the pathological changes in the colon tissue, downregulated interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, and upregulated IL-10, and increased the intestinal short-chain fatty acids (SCFAs) level. Lactiplantibacillus plantarum ELF051 also regulated the Toll-like receptor/myeloid differentiation primary response 88/nuclear factor kappa light chain enhancer of activated B cells (TLR4/MyD88/NF-κB) and the phosphatidylinositol 3-kinase/protein kinase B/ NF-κB (PI3K/AKT/ NF-κB) inflammatory signaling pathways. 16S rRNA analyses showed that L. plantarum ELF051 increased the abundance and diversity of gut bacteria, restoring gut microbiota imbalance. A Spearman's rank correlation analysis showed that lactobacilli are closely associated with inflammatory markers and SCFAs. This work demonstrated that L. plantarum ELF051 can attenuate antibiotic-induced intestinal inflammation in a mouse AAD model by suppressing the pro-inflammatory response and modulating the gut microbiota.

7.
Neurosci Lett ; 814: 137460, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37619699

RESUMEN

Growing evidence suggests that probiotics can ameliorate depression by regulating the microbiota-gut-brain axis. However, the mechanism of action of probiotics in depressive disorders remains incompletely understood. This study aimed to investigate the effect of Lacticaseibacillus rhamnosus TF318 in a corticosterone (CORT)-induced rat model of depression. The sucrose preference test (SPT) and Morris water maze (MWM) test showed that oral administration of L. rhamnosus TF318 for 21 d significantly prevented depressive behaviors. Administration of L. rhamnosus TF318 resulted in lower hippocampal levels of adrenocorticotropic hormone and corticotropin-releasing factor and serum levels of CORT and restoration of hippocampal levels of 5-hydroxytryptamine, dopamine, and norepinephrine. A marked increase was observed in the hippocampal concentration of brain-derived neurotrophic factor (BDNF), a change that may have involved the cyclic adenosine monophosphate (cAMP)/cAMP response element-binding (CREB)/BDNF signaling pathway. Treatment with L. rhamnosus TF318 corrected CORT-induced abnormalities in the gut microbiota, significantly increasing the relative abundance of Firmicutes. In conclusion, supplementation with L. rhamnosus TF318 prevented CORT-induced depressive behaviors by upregulating BDNF expression and modulating gut microbiota, suggesting that this strain has the potential as a novel probiotic with antidepressant effects.


Asunto(s)
Depresión , Lacticaseibacillus rhamnosus , Ratas , Animales , Depresión/tratamiento farmacológico , Depresión/prevención & control , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lacticaseibacillus , Antidepresivos/farmacología , Hipocampo/metabolismo
8.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37516440

RESUMEN

AIMS: Probiotics have been proved to be strongly linked to the occurrence and progression of atherosclerosis. This study aimed to investigate the improved effects and mechanisms underlying a potential probiotic, Weizmannia coagulans JA845, on atherosclerosis. METHODS AND RESULTS: Male Sprague-Dawley rats supported on a high-fat diet with vitamin D3 supplementation were subjected to W. coagulans JA845 treatment. W. coagulans JA845 obviously alleviated histological abnormalities of the abdominal aorta. After 6 weeks of W. coagulans JA845 administration, levels of TG, TC, LDL, ox-LDL, ROS, and MDA in the JA845 group decreased significantly, and those of HDL, GSH-Px, and SOD were markedly elevated. Treatment with W. coagulans JA845 also inhibited the secretion of ICAM-1 and VCAM-1 and regulated the plasma NO and eNOS content. In brief, administration of W. coagulans JA845 promoted the expression of the SIRT3/SOD2/FOXO3A pathway, inhibited the lipid metabolism pathway, SREBP-1c/FAS/DGAT2, and suppressed the JNK2/P38 MAPK/VEGF pathway implicated in endothelial injury. CONCLUSIONS: These results indicated W. coagulans JA845 improved atherosclerosis by regulating lipid metabolism, antioxidative stress, and protecting against endothelial injury.


Asunto(s)
Aterosclerosis , Lesiones del Sistema Vascular , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Colecalciferol/farmacología , Metabolismo de los Lípidos , Dieta Alta en Grasa/efectos adversos , Estrés Oxidativo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo
9.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177549

RESUMEN

The use of artificial intelligence (AI) to detect phishing emails is primarily dependent on large-scale centralized datasets, which has opened it up to a myriad of privacy, trust, and legal issues. Moreover, organizations have been loath to share emails, given the risk of leaking commercially sensitive information. Consequently, it has been difficult to obtain sufficient emails to train a global AI model efficiently. Accordingly, privacy-preserving distributed and collaborative machine learning, particularly federated learning (FL), is a desideratum. As it is already prevalent in the healthcare sector, questions remain regarding the effectiveness and efficacy of FL-based phishing detection within the context of multi-organization collaborations. To the best of our knowledge, the work herein was the first to investigate the use of FL in phishing email detection. This study focused on building upon a deep neural network model, particularly recurrent convolutional neural network (RNN) and bidirectional encoder representations from transformers (BERT), for phishing email detection. We analyzed the FL-entangled learning performance in various settings, including (i) a balanced and asymmetrical data distribution among organizations and (ii) scalability. Our results corroborated the comparable performance statistics of FL in phishing email detection to centralized learning for balanced datasets and low organizational counts. Moreover, we observed a variation in performance when increasing the organizational counts. For a fixed total email dataset, the global RNN-based model had a 1.8% accuracy decrease when the organizational counts were increased from 2 to 10. In contrast, BERT accuracy increased by 0.6% when increasing organizational counts from 2 to 5. However, if we increased the overall email dataset by introducing new organizations in the FL framework, the organizational level performance improved by achieving a faster convergence speed. In addition, FL suffered in its overall global model performance due to highly unstable outputs if the email dataset distribution was highly asymmetric.

10.
Food Sci Nutr ; 11(3): 1572-1583, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911834

RESUMEN

A novel probiotic Pediococcus acidilactici AS185, isolated from traditional Chinese fermented foods, was used as an adjunct culture for probiotic cheddar cheese production. The physicochemical composition, textural, free amino acids (FAAs), short-chain fatty acids (SCFAs) profiles, sensory properties, and microbial survival, was evaluated during the 90-day ripening period. The addition of P. acidilactici AS185 did not influence the physicochemical composition of cheddar cheese but significantly decreased the hardness without affecting its textural profile. During ripening, P. acidilactici AS185 was able to grow and promote the generation of FAAs and SCFAs, but did not alter the overall sensory properties; it rather improved the flavor and taste of cheese. In addition, the cheese matrix protected strain P. acidilactici AS185 during transit throughout the simulated gastrointestinal system. These results demonstrated that P. acidilactici AS185 adjunct cultures might be useful for producing high-quality probiotic cheddar cheese.

11.
Brain Res ; 1798: 148161, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379315

RESUMEN

BACKGROUND: Ischemic stroke treatments are intriguing and somewhat controversial. Recent findings have shown that human mesenchymal stem cells (MSC) may have therapeutic potential in ischemic stroke. Our hypothesis was that MSC therapy would promote sensory and motor recovery. Therefore, we intended to explore the optimal transplantation dose of MSC. METHODS: Adult Sprague-Dawley (SD) rats were induced to undergo transient focal cerebral ischemia by occluding the middle cerebral artery. A series of standard neurological/neurobehavioral experiments, including Neurological Severity Score (NSS) assessment, corner turning test, von Frey test, and rotarod were then performed on post stroke rats following treatment with vehicle or different doses of MSC (1 × 106, 2 × 106, and 5 × 106) through tail vein. To figure out the time course of neurological and functional recovery following ischemic stroke, tests were administered at regular intervals (days 1, 3, 7, 14, 21, and 28) after reperfusion. And the cerebral infarction volume was measured and analyzed by multi-slices H&E staining and micro-PET / CT in all of the groups at day 35 after ischemia stroke. Activation of microglia was explored by immunofluorescence at day 35 after ischemia stroke. RESULTS: The sensory and motor function was significantly improved by MSC treatment in stroke rats, along with cerebral infarction volume reduction. Besides, different doses of MSC have more or less reflected the therapeutic effect on stroke. The prominent treatment outcome in neurobehavioral recovery and infarction reduction was shown in low dose group with an injection dose of 1 × 106 cells. Nevertheless, the medium and high dose MSC could inhibit the activation of microglia much stronger. CONCLUSIONS: Treatment with MSC restored the sensory and motor function of cerebral ischemia rats, indicating it may be an effective therapy for ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Adulto , Animales , Ratas , Humanos , Ratas Sprague-Dawley , Infarto de la Arteria Cerebral Media/terapia , Médula Ósea , Modelos Animales de Enfermedad , Accidente Cerebrovascular/terapia , Isquemia Encefálica/terapia
12.
Molecules ; 29(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38202610

RESUMEN

The present study aimed to increase the content of minor ginsenosides and enhance the anti-colorectal cancer activity of ginsenosides via biotransformation by Lactiplantibacillus plantarum MB11 screened from fermented foods. A subcutaneous transplantation tumor model of murine colorectal cancer CT26 cells was established in mice to study the anticarcinogenic activities and mechanism of fermented total ginsenosides (FTGs). The results showed that L. plantarum MB11 fermentation increased the content of minor ginsenosides and decreased that of major ginsenosides. FTGs reduced the tumor weight and size compared with the model group. Immunofluorescence and TdT-mediated dUTP nick end labeling (TUNEL) analysis showed that FTGs significantly increase the number of caspase-3 cells in tumor tissue and induce cell apoptosis. Mechanically, FTGs activate AMPK/mTOR autophagy pathway and regulate JAK2/STAT3 and Bax/Bcl-2/caspase-3 apoptosis pathway. Overall, fermentation with L. plantarum MB11 enhanced minor ginsenosides in total ginsenosides, and FTGs induced subcutaneous transplantation tumor autophagy and apoptosis in mice.


Asunto(s)
Ginsenósidos , Lactobacillus plantarum , Neoplasias , Animales , Ratones , Fermentación , Caspasa 3 , Ginsenósidos/farmacología , Apoptosis
13.
Int J Biol Macromol ; 213: 631-638, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35667460

RESUMEN

Hydrogen sulfide (H2S) is a bioactive gas regulating insulin secretion and sensitivity, produced by sulfate-reducing bacteria in the gut. The present study investigated the effect of chondroitin sulfate (CS) treatment, which indirectly increased the H2S production on nonalcoholic fatty liver disease (NAFLD). A 7-week CS supplementation had beneficial effects on body weight gain, liver function, hepatic histology, and serum lipid levels. CS could ameliorate diet-induced insulin resistance and improve insulin sensitivity via the AKT pathway, and modulate gut microbiota composition, especially increased the abundance of Desulfovibrio and elevated levels of hydrogen sulfide (H2S). Collectively, these findings suggested that CS treatment was positively correlated with Desulfovibrio in the gut, and the metabolic H2S flowed into the liver via the gut-liver axis, thereby triggering the AKT signaling pathway and improving insulin resistance. Thus, CS-induced alterations in the gut microbiota seem a promising for ameliorating NAFLD.


Asunto(s)
Desulfovibrio , Sulfuro de Hidrógeno , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacología , Desulfovibrio/metabolismo , Dieta Alta en Grasa , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
J Biol Chem ; 292(21): 8729-8737, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28377508

RESUMEN

Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity.


Asunto(s)
Colesterol/biosíntesis , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Relación Estructura-Actividad , Animales , Células CHO , Células COS , Chlorocebus aethiops , Colesterol/química , Colesterol/genética , Cricetinae , Cricetulus , Retículo Endoplásmico/química , Retículo Endoplásmico/genética , Aparato de Golgi/química , Aparato de Golgi/genética , Humanos , Membranas Intracelulares/química , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína
15.
Sci Rep ; 6: 21191, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26879258

RESUMEN

Creatine kinase (CK) helps maintain homeostasis of intracellular ATP level by catalyzing the reversible phosphotransfer between ATP and phosphocreatine. In humans, there are two cytosolic CK isoforms, the muscle-type (M) and the brain-type (B), which frequently function as homodimers (hMMCK and hBBCK). Interestingly, these isoenzymes exhibit significantly different thermostabilities, despite high similarity in amino acid sequences and tertiary structures. In order to investigate the mechanism of this phenomenon, in this work, we first used domain swapping and site-directed mutagenesis to search for the key residues responsible for the isoenzyme-specific thermostability. Strikingly, the difference in thermostability was found to principally arise from one single residue substitution at position 36 (Pro in hBBCK vs. Leu in hMMCK). We then engaged the molecular dynamics simulations to study the molecular mechanism. The calculations imply that the P36L substitution introduces additional local interactions around residue 36 and thus further stabilizes the dimer interface through a complex interaction network, which rationalizes the observation that hMMCK is more resistant to thermal inactivation than hBBCK. We finally confirmed this molecular explanation through thermal inactivation assays on Asp36 mutants that were proposed to devastate the local interactions and thus the dimer associations in both isoenzymes.


Asunto(s)
Sustitución de Aminoácidos , Forma BB de la Creatina-Quinasa/química , Forma BB de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/química , Forma MM de la Creatina-Quinasa/genética , Estabilidad Proteica , Humanos , Isoenzimas , Modelos Moleculares , Mutación , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Temperatura
16.
Sci Rep ; 5: 12785, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26239669

RESUMEN

Physical unclonable functions (PUFs) exploit the intrinsic complexity and irreproducibility of physical systems to generate secret information. The advantage is that PUFs have the potential to provide fundamentally higher security than traditional cryptographic methods by preventing the cloning of devices and the extraction of secret keys. Most PUF designs focus on exploiting process variations in Complementary Metal Oxide Semiconductor (CMOS) technology. In recent years, progress in nanoelectronic devices such as memristors has demonstrated the prevalence of process variations in scaling electronics down to the nano region. In this paper, we exploit the extremely large information density available in nanocrossbar architectures and the significant resistance variations of memristors to develop an on-chip memristive device based strong PUF (mrSPUF). Our novel architecture demonstrates desirable characteristics of PUFs, including uniqueness, reliability, and large number of challenge-response pairs (CRPs) and desirable characteristics of strong PUFs. More significantly, in contrast to most existing PUFs, our PUF can act as a reconfigurable PUF (rPUF) without additional hardware and is of benefit to applications needing revocation or update of secure key information.

17.
PLoS One ; 6(9): e24681, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21931810

RESUMEN

Creatine kinase (CK, EC 2.7.3.2) plays a key role in the energy homeostasis of excitable cells. The cytosolic human CK isoenzymes exist as homodimers (HMCK and HBCK) or a heterodimer (MBCK) formed by the muscle CK subunit (M) and/or brain CK subunit (B) with highly conserved three-dimensional structures composed of a small N-terminal domain (NTD) and a large C-terminal domain (CTD). The isoforms of CK provide a novel system to investigate the sequence/structural determinants of multimeric/multidomain protein folding. In this research, the role of NTD and CTD as well as the domain interactions in CK folding was investigated by comparing the equilibrium and kinetic folding parameters of HMCK, HBCK, MBCK and two domain-swapped chimeric forms (BnMc and MnBc). Spectroscopic results indicated that the five proteins had distinct structural features depending on the domain organizations. MBCK BnMc had the smallest CD signals and the lowest stability against guanidine chloride-induced denaturation. During the biphasic kinetic refolding, three proteins (HMCK, BnMc and MnBc), which contained either the NTD or CTD of the M subunit and similar microenvironments of the Trp fluorophores, refolded about 10-fold faster than HBCK for both the fast and slow phase. The fast folding of these three proteins led to an accumulation of the aggregation-prone intermediate and slowed down the reactivation rate thereby during the kinetic refolding. Our results suggested that the intra- and inter-subunit domain interactions modified the behavior of kinetic refolding. The alternation of domain interactions based on isoenzymes also provides a valuable strategy to improve the properties of multidomain enzymes in biotechnology.


Asunto(s)
Creatina Quinasa/química , Creatina Quinasa/metabolismo , Citosol/enzimología , Isoenzimas/química , Isoenzimas/metabolismo , Humanos , Cinética , Pliegue de Proteína
18.
Biochem J ; 436(2): 437-45, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21426302

RESUMEN

Muscle contraction requires high energy fluxes, which are supplied by MM-CK (muscle-type creatine kinase) which couples to the myofibril. However, little is known about the detailed molecular mechanisms of how MM-CK participates in and is regulated during muscle contraction. In the present study, MM-CK is found to physically interact with the slow skeletal muscle-type MyBPC1 (myosin-binding protein C1). The interaction between MyBPC1 and MM-CK depended on the creatine concentration in a dose-dependent manner, but not on ATP, ADP or phosphocreatine. The MyBPC1-CK interaction favoured acidic conditions, and the two molecules dissociated at above pH 7.5. Domain-mapping experiments indicated that MM-CK binds to the C-terminal domains of MyBPC1, which is also the binding site of myosin. The functional coupling of myosin, MyBPC1 and MM-CK is further corroborated using an ATPase activity assay in which ATP expenditure accelerates upon the association of the three proteins, and the apparent K(m) value of myosin is therefore reduced. The results of the present study suggest that MyBPC1 acts as an adaptor to connect the ATP consumer (myosin) and the regenerator (MM-CK) for efficient energy metabolism and homoeostasis.


Asunto(s)
Proteínas Portadoras/fisiología , Forma MM de la Creatina-Quinasa/metabolismo , Fibras Musculares de Contracción Lenta/fisiología , Miosinas/metabolismo , Animales , Metabolismo Energético/fisiología , Células HEK293 , Homeostasis/fisiología , Humanos , Ratones , Fibras Musculares de Contracción Lenta/enzimología , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Unión Proteica/fisiología , Reclutamiento Neurofisiológico/fisiología
19.
Int J Biol Macromol ; 48(2): 239-42, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20923681

RESUMEN

Cystine accumulation in cystinotic patients has been reported to inhibit brain type creatine kinase (BBCK), an important thiol-containing enzyme in energy homeostasis. In this research, we found that the oxidized form of BBCK (O-BBCK) was induced by cystine, and the intramolecular disulfide bond of O-BBCK was formed between Cys74 and Cys254. The wild type BBCK was found to be more resistant to the inactivation induced by cystine when compared to the single point mutant C74S or C254S. Meanwhile, the existence of GSH could protect the wild type BBCK more efficiently than the mutants. These observations suggested that the ability to generate the oxidized form could protect BBCK against the intracellular oxidative stress.


Asunto(s)
Forma BB de la Creatina-Quinasa/metabolismo , Cistina/farmacología , Sustancias Protectoras/metabolismo , Dicroismo Circular , Disulfuros/metabolismo , Activación Enzimática/efectos de los fármacos , Glutatión/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo , Espectrometría de Fluorescencia
20.
Int J Mol Sci ; 11(7): 2584-96, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20717523

RESUMEN

The non-cooperative or sequential events which occur during protein thermal denaturation are closely correlated with protein folding, stability, and physiological functions. In this research, the sequential events of human brain-type creatine kinase (hBBCK) thermal denaturation were studied by differential scanning calorimetry (DSC), CD, and intrinsic fluorescence spectroscopy. DSC experiments revealed that the thermal denaturation of hBBCK was calorimetrically irreversible. The existence of several endothermic peaks suggested that the denaturation involved stepwise conformational changes, which were further verified by the discrepancy in the transition curves obtained from various spectroscopic probes. During heating, the disruption of the active site structure occurred prior to the secondary and tertiary structural changes. The thermal unfolding and aggregation of hBBCK was found to occur through sequential events. This is quite different from that of muscle-type CK (MMCK). The results herein suggest that BBCK and MMCK undergo quite dissimilar thermal unfolding pathways, although they are highly conserved in the primary and tertiary structures. A minor difference in structure might endow the isoenzymes dissimilar local stabilities in structure, which further contribute to isoenzyme-specific thermal stabilities.


Asunto(s)
Forma BB de la Creatina-Quinasa/química , Desnaturalización Proteica , Espectrometría de Fluorescencia , Termodinámica , Rastreo Diferencial de Calorimetría , Forma BB de la Creatina-Quinasa/metabolismo , Activación Enzimática , Humanos , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA