Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
Nat Commun ; 15(1): 4167, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755131

Mechanical energy harvesting using triboelectric nanogenerators is a highly desirable and sustainable method for the reliable power supply of widely distributed electronics in the new era; however, its practical viability is seriously challenged by the limited performance because of the inevitable side-discharge and low Coulombic-efficiency issues arising from electrostatic breakdown. Here, we report an important progress on these fundamental problems that the spontaneously established reverse electric field between the electrode and triboelectric layer can restrict the side-discharge problem in triboelectric nanogenerators. The demonstration employed by direct-current triboelectric nanogenerators leads to a high Coulombic efficiency (increased from 28.2% to 94.8%) and substantial enhancement of output power. More importantly, we demonstrate this strategy is universal for other mode triboelectric nanogenerators, and a record-high average power density of 6.15 W m-2 Hz-1 is realized. Furthermore, Coulombic efficiency is verified as a new figure-of-merit to quantitatively evaluate the practical performance of triboelectric nanogenerators.

2.
Small ; : e2400698, 2024 Mar 06.
Article En | MEDLINE | ID: mdl-38446055

Triboelectric nanogenerator (TENG) is a promising solution to harvest the low-frequency, low-actuation-force, and high-entropy droplet energy. Conventional attempts mainly focus on maximizing electrostatic energy harvest on the liquid-solid surface, but enormous kinetic energy of droplet hitting the substrate is directly dissipated, limiting the output performance. Here, a dual-mode TENG (DM-TENG) is proposed to efficiently harvest both electrostatic energy at liquid-solid surface from a droplet TENG (D-TENG) and elastic potential energy of the vibrated cantilever from a contact-separation TENG (CS-TENG). Triggered by small droplets, the flexible cantilever beam, rather than conventional stiff ones, can easily vibrate multiple times with large amplitude, enabling frequency multiplication of CS-TENG and producing amplified output charges. Combining with the top electrode design to sufficiently utilize charges at liquid-solid interface, a record-high output charge of 158 nC is realized by single droplet. The energy conversion efficiency of DM-TENG is 2.66-fold of D-TENG. An array system with the specially designed power management circuit is also demonstrated for building self-powered system, offering promising applications for efficiently harvesting raindrop energy.

3.
Small ; : e2311930, 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38433391

Human health and the environment face significant challenges of air pollution, which is predominantly caused by PM2.5 or PM10 particles. Existing control methods often require elevated energy consumption or bulky high-voltage electrical equipment. To overcome these limitations, a self-powered, convenient, and compact direct current high-voltage triboelectric nanogenerator based on triboelectrification and electrostatic breakdown effects is proposed. By optimizing the structure-design of the direct current triboelectric nanogenerator and corresponding output voltage, it can easily achieve an output voltage of over 3 kV with a high charge density of 320 µC m-2 . A power management circuit is designed to overcome the influence of third domain self-breakdown, optimize 92.5% amplitude of voltage shake, and raise 5% charge utilization ratio. With a device size as tiny as 2.25 cm3 , it can continuously drive carbon nanowires to generate negative ions that settle dust within 300 s. This compact, simple, efficient, and safe high-voltage direct current triboelectric nanogenerator represents a promising sustainable solution. It offers efficient dust mitigation, fostering cleaner environments, and enhancing overall health.

4.
Nat Commun ; 14(1): 3218, 2023 Jun 03.
Article En | MEDLINE | ID: mdl-37270518

Direct-current triboelectric nanogenerators arising from electrostatic breakdown can eliminate the bottleneck problem of air breakdown in conventional triboelectric nanogenerators, offering critical benefits of constant-current output, resistance to electromagnetic interference, and high output power density. Previous understanding is that its output characteristics are described by a capacitor-breakdown model or dictated by one or two discharge domains in direct-current triboelectric nanogenerators. Here, we demonstrate that the former holds only for ideal conditions and the latter cannot fully explain the dynamic process and output performance. We systematically image, define, and regulate three discharge domains in direct-current triboelectric nanogenerators, then a "cask model" is developed to bridge the cascaded-capacitor-breakdown dynamic model in ideal conditions and real outputs. Under its guidance, the output power is increased by an order of magnitude within a wide range of resistive loads. These unexplored discharge domains and optimization methods revolutionize the output performance and potential applications of direct-current triboelectric nanogenerators.

5.
Small Methods ; 7(10): e2300562, 2023 Oct.
Article En | MEDLINE | ID: mdl-37330665

Triboelectric nanogenerators (TENGs) have received intense attention due to their broad application prospects in the new era of internet of things (IoTs) as distributed power sources and self-powered sensors. Advanced materials are vital components for TENGs, which decide their comprehensive performance and application scenarios, opening up the opportunity to develop efficient TENGs and expand their potential applications. In this review, a systematic and comprehensive overview of the advanced materials for TENGs is presented, including materials classifications, fabrication methods, and the properties required for applications. In particular, the triboelectric, friction, and dielectric performance of advanced materials is focused upon and their roles in designing the TENGs are analyzed. The recent progress of advanced materials used in TENGs for mechanical energy harvesting and self-powered sensors is also summarized. Finally, an overview of the emerging challenges, strategies, and opportunities for research and development of advanced materials for TENGs is provided.

6.
Nat Commun ; 13(1): 6019, 2022 Oct 12.
Article En | MEDLINE | ID: mdl-36224185

Triboelectric charge density and energy density are two crucial factors to assess the output capability of dielectric materials in a triboelectric nanogenerator (TENG). However, they are commonly limited by the breakdown effect, structural parameters, and environmental factors, failing to reflect the intrinsic triboelectric behavior of these materials. Moreover, a standardized strategy for quantifying their maximum values is needed. Here, by circumventing these limitations, we propose a standardized strategy employing a contact-separation TENG for assessing a dielectric material's maximum triboelectric charge and energy densities based on both theoretical analyses and experimental results. We find that a material's vacuum triboelectric charge density can be far higher than previously reported values, reaching a record-high of 1250 µC m-2 between polyvinyl chloride and copper. More importantly, the obtained values for a dielectric material through this method represent its intrinsic properties and correlates with its work function. This study provides a fundamental methodology for quantifying the triboelectric capability of dielectric materials and further highlights TENG's promising applications for energy harvesting.

7.
Small ; 18(24): e2201402, 2022 Jun.
Article En | MEDLINE | ID: mdl-35560726

As an emerging energy-harvesting technology, the triboelectric nanogenerator (TENG) is considered a powerful driving force toward the new-era of Internet of Things and artificial intelligence, but its output performance is dramatically influenced by environmental humidity. Herein, a direct current TENG (DC-TENG) based on the triboelectrification effect and electrostatic breakdown is reported to address the problem of output attenuation in high humidity environments for the conventional TENGs. It is found that high humidity not only enhances the sliding triboelectrification effect of hydrophobic triboelectric materials, but also promotes the electrostatic breakdown process for DC-TENG, thus contributing to the improvement of DC-TENG output. Furthermore, taking poly(vinyl chloride) film as the friction layer, the effective surface charge density of DC-TENG with microstructure-designed electrode achieves a milestone value of ≈2.97 mC m-2 under 90% relative humidity, which is almost 1.42-fold larger than that under 30% RH. This work not only establishes an effective methodology to boost the output performance of TENG in a high humidity environment, but also establishes a foundation for its practical applications in large-scale energy harvesting.

8.
Small Methods ; 6(5): e2200066, 2022 May.
Article En | MEDLINE | ID: mdl-35352491

As a new technology for high-entropy energy harvesting, a triboelectric nanogenerator (TENG) has broad applications in sensor networks and internet of things as a power source, but its average power density is limited by the fixed low-frequency output. Here, a frequency-multiplication TENG based on intrinsic high frequency of tuning fork is proposed which enables converting low-frequency mechanical energy into high-frequency electric energy. A tuning-fork TENG is used to systematically study the effects of intrinsic frequency, dielectric's thickness, and gap distance on its electric performance, and a total transferred charges of 4.3 µC and an average power density of 9.42 mW m-2 are realized at the triggering frequency of 0.2 Hz, which are 71 times and 5.7 times than that of the single-cycle output of conventional contact-separation TENG, respectively. Moreover, the crest factor also decreases from 3.5 to around 1.5. Then, a homemade tuning fork-like TENG is reasonably designed for harvesting ambient wind energy, achieving an average power density of 20.02 mW m-2 at a wind speed of 7 m s-1 . Specially, its impedance resistance is independent of the mechanical triggering frequency, simplifying the back-end power management circuit design. Therefore, the frequency-multiplication TENG shows a great potential for efficient distributed energy harvesting.

9.
Adv Mater ; 34(14): e2110363, 2022 Apr.
Article En | MEDLINE | ID: mdl-35122332

Automatic control systems are the most efficient technology for reducing labor cost while improving work efficiency. Vector motion monitoring is indispensable for the normal operation of automatic control systems. Here, a self-powered dual-type signal triboelectric nanogenerator (DS-TENG) is designed through integrating an alternating-current TENG and a direct-current TENG, which can monitor vector movement in real time based on pulse signal counts. As a result, the DS-TENG avoids the shortcoming of traditional self-powered sensors based on signal amplitude that is sensitive to the working environment, achieves a high sensing precision, and maintains stability after reciprocating motion of 500 000 cycles. Moreover, it realizes effective movement direction recognition by self-powered switching of signal type in reverse movement. This dual-type signal TENG exhibits high precision and automatic direction recognition in vector motion monitor and trajectory tracker, paving the way for the application of the self-powered TENG sensor in automatic control systems in the future.

10.
Open Life Sci ; 16(1): 1261-1267, 2021.
Article En | MEDLINE | ID: mdl-34909477

The term fatty keratopathy is used to describe the phenomenon of fat deposition caused by corneal neovascularization, which will severely affect the eye's beauty and vision. The purpose of this study was to establish a New Zealand white rabbit animal model of fatty keratopathy, that is, the establishment of an animal model of fatty keratopathy. The goal was achieved by the combination of a corneal neovascularization animal model and a hyperlipidemia animal model. Two groups were created according to the experimental sequence. The first group initially induced a corneal neovascularization pattern and later induced a hyperlipidemia pattern, and the second group followed the opposite sequence. The results of the two groups showed that all the significant crystalline deposits of the cornea were visible. So the animal models of fatty keratopathy were successfully established in both groups.

11.
ACS Nano ; 15(12): 19684-19691, 2021 Dec 28.
Article En | MEDLINE | ID: mdl-34860004

Although electrocoagulation technology has been widely researched in wastewater treatment, high energy consumption and electrode passivation are still the main challenges for its widespread applications. Here, we propose a self-powered electrocoagulation system based on a triboelectric nanogenerator (TENG) with alternating current (AC) outputs to solve these two issues, and thus enhance the removal efficiency of organic pollutants. Compared with the direct current source, the AC power source can reduce the electrode passivation, produce more aluminum hydroxide compounds after consuming an equal amount of charges, and thus improve the degradation efficiency. Moreover, the removal efficiency can be further enhanced by decreasing the frequency AC, in which a 5.7-fold improvement was achieved at 0.2 Hz compared to DC at 1.8 Hz. Inspired by the low frequency of ocean wave water, we developed a self-powered AC-electrocoagulation system to directly drive the electrocoagulation reaction by harvesting water wave energy, which can effectively remove 94.8% of xylenol orange and 98.8% of water-oil emulsion, and thus completely address the problem of energy consumption. This study further promotes the application of self-powered electrochemical systems in treating environmental pollution.

12.
Nat Commun ; 12(1): 4686, 2021 Aug 03.
Article En | MEDLINE | ID: mdl-34344892

The rapid development of Internet of Things and artificial intelligence brings increasing attention on the harvesting of distributed energy by using triboelectric nanogenerator (TENG), especially the direct current TENG (DC-TENG). It is essential to select appropriate triboelectric materials for obtaining a high performance TENG. In this work, we provide a set of rules for selecting the triboelectric materials for DC-TENG based on several basic parameters, including surface charge density, friction coefficient, polarization, utilization rate of charges, and stability. On the basis of the selection rules, polyvinyl chloride, used widely in industry rather than in TENG, is selected as the triboelectric layer. Its effective charge density can reach up to ~8.80 mC m-2 in a microstructure-designed DC-TENG, which is a new record for all kinds of TENGs. This work can offer a basic guideline for the triboelectric materials selection and promote the practical applications of DC-TENG.

13.
ACS Appl Mater Interfaces ; 13(26): 30776-30784, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-34165276

With the great progress in human activities and production technologies, the waste inevitably produced causes not only environmental pollution but also resource waste; meanwhile, the mobile and portable electronic devices urgently need a distributed and sustainable energy source to ensure their stable operation. Here, the waste pollutants (milk cartons) generated from daily life, commonly associated with environmental concerns, are instead identified as an available resource for preparing an emerging energy harvester (triboelectric nanogenerator, TENG), which can convert ubiquitous mechanical energy into electric power. Consequently, based on the waste material, the initial charge density of the TENG is as low as 0.035 mC m-2, which can be tremendously improved to 1.00 mC m-2 through combining a charge excitation circuit, achieving efficient energy harvesting. In addition, compared to the common dielectric film, the waste material can reduce the cost and simplify the process of the preparation of TENG. This work provides not only an innovative approach to simultaneously realize environmental protection and energy harvesting but also more material choice for the preparation of a low-cost and high-performance TENG.

14.
ACS Nano ; 14(2): 2475-2482, 2020 Feb 25.
Article En | MEDLINE | ID: mdl-32040919

Vibration sensor is very necessary for monitoring the structural health of constructions. However, it is still a major challenge to meet simultaneously real-time monitoring, continuous assessment, and early incident warning in a simple device without a complicated power and analysis system. Here, we report a self-powered vibration sensor system to achieve real-time and continuous detection of the vibration characteristics from a dual-mode triboelectric nanogenerator (AC/DC-TENG), which can produce either alternating current (AC) or direct current (DC) within different operation zones. Within the vibration-safe region, the AC/DC-TENG with AC output not only can continuously assess the vibration characteristics but also can power the signal transmission. More importantly, once the vibration amplitude crosses the danger threshold, the AC converts immediately to DC, meanwhile triggering the alarm system directly to accurately predict the danger of construction. Our self-powered vibration sensor system can serve as a facile tool for accurately monitoring the structural health of constructions.

...