Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Sheng Li Xue Bao ; 75(2): 231-240, 2023 Apr 25.
Article Zh | MEDLINE | ID: mdl-37089097

Persistent neurogenesis exists in the subventricular zone (SVZ) of the ventricles and the subgranular zone (SGZ) of the dentate gyrus of the hippocampus in the adult mammalian brain. Adult endogenous neurogenesis not only plays an important role in the normal brain function, but also has important significance in the repair and treatment of brain injury or brain diseases. This article reviews the process of adult endogenous neurogenesis and its application in the repair of traumatic brain injury (TBI) or ischemic stroke, and discusses the strategies of activating adult endogenous neurogenesis to repair brain injury and its practical significance in promoting functional recovery after brain injury.


Brain Hemorrhage, Traumatic , Brain , Ischemic Stroke , Neurogenesis , Adult , Animals , Humans , Brain/physiology , Brain/physiopathology , Hippocampus/physiology , Hippocampus/physiopathology , Mammals/physiology , Neurogenesis/physiology , Brain Hemorrhage, Traumatic/physiopathology , Brain Hemorrhage, Traumatic/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/therapy , Recovery of Function , Spinal Cord/physiology , Spinal Cord/physiopathology
2.
Drug Deliv Transl Res ; 13(9): 2378-2393, 2023 09.
Article En | MEDLINE | ID: mdl-36943630

Available methods for differentiating stem cells into neurons require a large number of cytokines and neurotrophic factors, with complex steps and slow processes, and are inefficient to produce functional neurons and form synaptic contacts, which is expensive and impractical in clinical application. Here, we demonstrated a bioactive material, basic fibroblast growth factor (bFGF)-chitosan controlled release system, for facilitating neuronal differentiation from NSCs and the functional maturation of the induced neurons with high efficiency. We illustrated by immunostaining that the neurons derived from NSCs expressed mature immunomarkers of interneurons and excitatory neurons. And we found by patch-clamp that the induced neurons exhibited diverse electrophysiological properties as well as formed functional synapses. In vivo, we implanted bFGF-chitosan into lesion area in traumatic brain injury (TBI) mice and similarly observed abundance of neuroblasts in SVZ and the presence of newborn functional neurons in injury area, which integrated into synaptic networks. Taken together, our efficient and rapid tissue engineering approach may be a potential method for the generation of functional neuronal lineage cells from stem cells and a therapy of brain injury and disease.


Chitosan , Neural Stem Cells , Mice , Animals , Fibroblast Growth Factor 2/metabolism , Delayed-Action Preparations , Cell Differentiation , Cells, Cultured , Neurons/metabolism , Neural Stem Cells/metabolism
3.
Cell Death Dis ; 14(2): 117, 2023 02 13.
Article En | MEDLINE | ID: mdl-36781833

Tumor-associated macrophages (TAMs) are highly heterogeneous and play vital roles in tumor progression. Here we adopted a C57BL/6 mouse model imitating the late-stage colorectal liver metastasis (CRLM) by Mc38 colorectal cancer cell injection via the portal vein. With serial sections of CRLM biopsies, we defined 7-9 days post-injection as the critical period for tumor neovascularization, which was initiated from the innate liver vessels via vessel cooption and extended by vascular mimicry and thereof growth of CD34+cells. In samples with increasing-sized liver metastases, the infiltrated Ly6C+ CD11b+ F4/80- monocytes steadily gained the expression of F4/80, a Kupffer cell marker, before transformed into Ly6C- CD11bint F4/80+ cells, which, the same phenotype was also adapted by Ly6C- CD11b- F4/80+ Kupffer cells. F4/80+ TAMs showed proximity to neovascularization and tumor vessels, functionally angiogenic in vivo; and greatly promoted the activation of a few key angiogenic markers such as VEGFA, Ki67, etc. in endothelial cells in vitro. Depletion of macrophages or diversion of macrophage polarization during neovascularization impeded tumor growth and vascularization and resulted in greatly reduced F4/80+ TAMs, yet increased CD11b+ cells due to inhibition of TAM differentiation. In summary, our results showed dynamic and spatial-temporal F4/80+ TAM transformation within the tumor microenvironment and strengthened its role as perivascular and angiogenic TAMs in CRLM.


Colorectal Neoplasms , Liver Neoplasms , Tumor-Associated Macrophages , Animals , Mice , Cell Differentiation , Colorectal Neoplasms/pathology , Disease Models, Animal , Endothelial Cells , Liver Neoplasms/secondary , Mice, Inbred C57BL , Neovascularization, Pathologic , Tumor Microenvironment
4.
Prog Neurobiol ; 220: 102375, 2023 01.
Article En | MEDLINE | ID: mdl-36410665

An implanted neurotrophin-3 (NT3)-chitosan scaffold can recruit endogenous neural stem cells to migrate to a lesion region and differentiate into mature neurons after adult spinal cord injury (SCI). However, the identities of these newborn neurons and whether they can form functional synapses and circuits to promote recovery after paraplegia remain unknown. By using combined advanced technologies, we revealed here that the newborn neurons of several subtypes received synaptic input from the corticospinal tract (CST), rubrospinal tract (RST), and supraspinal tracts. They formed a functional neural circuit at the injured spinal region, further driving the local circuits beneath the lesion. Our results showed that the NT3-chitosan scaffold facilitated the maturation of spinal neurons and the reestablishment of the spinal neural circuit in the lesion region 12 weeks after SCI. Transsynaptic virus experiments revealed that these newborn spinal neurons received synaptic connections from the CST and RST and drove the neural circuit beneath the lesion via newly formed synapses. These re-established circuits successfully recovered the formation and function of the neuromuscular junction (NMJ) beneath the lesion spinal segments. These findings suggest that the NT3-chitosan scaffold promotes the formation of relay neural circuits to accommodate various types of brain descending inputs and facilitate functional recovery after paraplegia.


Chitosan , Spinal Cord Injuries , Rats , Animals , Pyramidal Tracts/pathology , Motor Neurons/pathology , Paraplegia/pathology , Spinal Cord , Nerve Regeneration
5.
Biomaterials ; 292: 121919, 2023 01.
Article En | MEDLINE | ID: mdl-36455486

Activation of endogenous neurogenesis by bioactive materials enables restoration of sensory/motor function after complete spinal cord injury (SCI) via formation of new relay neural circuits. The underlying wiring logic of newborn neurons in adult central nervous system (CNS) is unknown. Here, we report neurotrophin3-loaded chitosan biomaterial substantially recovered bladder function after SCI. Multiple neuro-circuitry tracing technologies using pseudorabies virus (PRV), rabies virus (RV), and anterograde adeno-associated virus (AAV), demonstrated that newborn neurons were integrated into the micturition neural circuits and reconnected higher brain centers and lower spinal cord centers to control voiding, and participated in the restoration of the lower urinary tract function, even in the absence of long-distance axonal regeneration. Opto- and chemo-genetic studies further supported the notion that the supraspinal control of the lower urinary tract function was partially recovered. Our data demonstrated that regenerated relay neurons could be properly integrated into disrupted long-range neural circuits to restore function of adult CNS.


Herpesvirus 1, Suid , Spinal Cord Injuries , Animals , Humans , Infant, Newborn , Urinary Bladder , Spinal Cord Injuries/therapy , Neurons , Spinal Cord
6.
Signal Transduct Target Ther ; 7(1): 184, 2022 06 17.
Article En | MEDLINE | ID: mdl-35710784

Spinal cord injury (SCI) is a severe damage usually leading to limb dysesthesia, motor dysfunction, and other physiological disability. We have previously shown that NT3-chitosan could trigger an acute SCI repairment in rats and non-human primates. Due to the negative effect of inhibitory molecules in glial scar on axonal regeneration, however, the role of NT3-chitosan in the treatment of chronic SCI remains unclear. Compared with the fresh wound of acute SCI, how to handle the lesion core and glial scars is a major issue related to chronic-SCI repair. Here we report, in a chronic complete SCI rat model, establishment of magnetic resonance-diffusion tensor imaging (MR-DTI) methods to monitor spatial and temporal changes of the lesion area, which matched well with anatomical analyses. Clearance of the lesion core via suction of cystic tissues and trimming of solid scar tissues before introducing NT3-chitosan using either a rigid tubular scaffold or a soft gel form led to robust neural regeneration, which interconnected the severed ascending and descending axons and accompanied with electrophysiological and motor functional recovery. In contrast, cystic tissue extraction without scar trimming followed by NT3-chitosan injection, resulted in little, if any regeneration. Taken together, after lesion core clearance, NT3-chitosan can be used to enable chronic-SCI repair and MR-DTI-based mapping of lesion area and monitoring of ongoing regeneration can potentially be implemented in clinical studies for subacute/chronic-SCI repair.


Chitosan , Spinal Cord Injuries , Animals , Cicatrix/pathology , Diffusion Tensor Imaging , Nerve Regeneration , Rats , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
7.
Front Neuroanat ; 16: 838951, 2022.
Article En | MEDLINE | ID: mdl-35370570

Muscle spindles, an important proprioceptor scattered in the skeletal muscle, participate in maintaining muscle tension and the fine regulation of random movement. Although muscle spindles exist in all skeletal muscles, explanations about the distribution and morphology of muscle spindles remain lacking for the indetermination of spindle location across muscles. In this study, traditional time-consuming histochemical technology was utilized to determine the muscle spindle anatomical and morphological characteristics in the lower extremity skeletal muscle in C57BL/6 mice. The relative distance from spindles to nerve-entry points varied from muscles in the ventral-dorsal direction, in which spindles in the lateral of gastrocnemius were not considered to be close to its nerve-entry point. In the longitudinal pattern, the domain with the highest abundance of spindles corresponded to the nerve-entry point, excluding the tibialis anterior. Spindles are mainly concentrated at the middle and rostral domain in all muscles. The results suggest a heterogeneity of the distribution of spindles in different muscles, but the distribution trend generally follows the location pattern of the nerve-entry point. Histochemical staining revealed that the spindle did not have a symmetrical structure along the equator, and this result does not agree with previous findings. Exploring the distribution and structural characteristics of muscle spindles in skeletal muscle can provide some anatomical basis for the study of muscle spindles at the molecular level and treatment of exercise-related diseases and provide a comprehensive understanding of muscle spindle morphology.

8.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 485-490, 2022 Sep.
Article Zh | MEDLINE | ID: mdl-37088757

OBJECTIVE: To investigate the electrophysiological properties of pyramidal neurons in mouse motor cortex during the early postnatal development. METHODS: Thirty-six mice were randomly divided into postnatal 1-, 2-, 3-Week and 1-, 2-,3-Month groups (n=6). Membrane properties, action potentials (AP) and spontaneous excitatory postsynaptic currents (sEPSCs) of motor cortex pyramidal neurons were recorded to evaluate the changes in the intrinsic electrophysilogical characteristics by using whole cell patch clamp. Pyramidal neurons and interneurons were distinguished according to the AP firing patterns. RESULTS: Comparing with interneurons, pyramidal neurons exhibited regular spiking (RS) with smaller frequency. During the period of postnatal 1 Week-3 Months, some of the intrinsic membrane properties of motor cortex pyramidal neurons changed. Compared to the 1-Week mice, the resting membrane potential (RMP) of 2-Week decreased significantly (P<0.01), and the membrane input resistance (Rin) of 1-Month got a hyperpolarization (P<0.01), and they showed no significant change in the next period, while the membrane capacitance (Cm) showed no significant changes during the whole postnatal development. The AP dynamic properties changed significantly during this period. Compared to the 1-Week mice, the absolute value of the AP threshold and the AP amplitude of the 3-Week increased significantly (P<0.01), while the spike half width of the 2-Week decreased substantially (P<0.05), and they showed no significant change in the next period. The sEPSCs frequency and amplitude of 1- Month increased significantly compared to the 1-Week mice(P<0.01), while during the period of next 1 Month-3 Months, the amplitude and frequency showed no significant change. CONCLUSION: These results suggest that the motor cortex pyramidal neurons have time-specific eletrophysilogical properties during the postnatal development. The electrophysiological properties can be used as a functional index to detect the degree of neurons maturity, and as a marker to distinguish the pyramidal neurons and interneurons.


Motor Cortex , Animals , Mice , Pyramidal Cells/physiology , Action Potentials/physiology
9.
Neural Regen Res ; 17(5): 1146-1155, 2022 May.
Article En | MEDLINE | ID: mdl-34558544

Although autogenous nerve transplantation is the gold standard for treating peripheral nerve defects of considerable length, it still has some shortcomings, such as insufficient donors and secondary injury. Composite chitosan scaffolds loaded with controlled release of nerve growth factor can promote neuronal survival and axonal regeneration after short-segment sciatic nerve defects. However, the effects on extended nerve defects remain poorly understood. In this study, we used chitosan scaffolds loaded with nerve growth factor for 8 weeks to repair long-segment (20 mm) sciatic nerve defects in adult rats. The results showed that treatment markedly promoted the recovery of motor and sensory functions. The regenerated sciatic nerve not only reconnected with neurons but neural circuits with the central nervous system were also reconstructed. In addition, the regenerated sciatic nerve reconnected the motor endplate with the target muscle. Therefore, this novel biomimetic scaffold can promote the regeneration of extended sciatic nerve defects and reconstruct functional circuits. This provides a promising method for the clinical treatment of extended peripheral nerve injury. This study was approved by the Animal Ethics Committee of Capital Medical University, China (approval No. AEEI-2017-033) on March 21, 2017.

10.
Biomed Mater ; 16(2): 025011, 2021 02 18.
Article En | MEDLINE | ID: mdl-33418546

The repair of peripheral nerve injury is still a great challenge in clinic. Autologous nerve transplantation is the gold standard for the treatment of long-distance peripheral nerve defects, but this method remains associated with high morbidity of the donor site and lack of matching donor. In this study, a novel chitosan scaffold (CS) loaded with control-released basic fibroblast growth factor (bFGF) was used to repair 20 mm sciatic nerve defects in adult rat. The ultrastructure of bFGF-CS was observed by scanning electron microscope. The tensile tester and nano-indentation were used to evaluate its mechanical properties. Cholera toxin B-subunit (CTB) tracing, sciatic nerve function index, electromyography, immunofluorescence staining of regenerated nerve and motor endplate were used to evaluate the regeneration of sciatic nerve in rats. The results showed that the structure and mechanical properties of bFGF-CS was beneficial to the regeneration of sciatic nerve. At 12 weeks after operation, bFGF-CS facilitated sciatic nerve regeneration in rat. CTB successfully crossed the sciatic nerve defect area to reach the cell body of sciatic nerve. The motor endplate was reconstructed, thus promoting the behavioral recovery. These findings suggest that the bFGF-CS provides an effective means of repairing 20 mm sciatic nerve defects and shows great potential for clinical application.


Chitosan/chemistry , Fibroblast Growth Factor 2/chemistry , Nerve Regeneration/drug effects , Sciatic Nerve/drug effects , Tissue Scaffolds/chemistry , Animals , Behavior, Animal , Cell Transplantation/methods , Cholera Toxin/chemistry , Electrophysiology , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Muscle, Skeletal/metabolism , Muscular Atrophy/therapy , Myelin Sheath/chemistry , Nerve Tissue , Peripheral Nerve Injuries/physiopathology , Pressure , Rats , Regeneration , Sciatic Nerve/pathology , Tissue Engineering/methods
11.
Biomed Res Int ; 2019: 5086297, 2019.
Article En | MEDLINE | ID: mdl-31032349

Bone marrow mesenchymal stem cells undergo differentiation to different lineages with different efficiencies when induced by different factors. We added a bFGF-chitosan controlled release system (bFGF-CCRS) as an inducer into conditioned medium to facilitate the oriented differentiation of BMSCs into neural lineage cells (eventually mature neurons); furthermore, we synchronized BMSCs to the G0/G1 phase via serum starvation to observe the effect of the inducer on the differentiation direction and efficiency. The nonsynchronized group, chitosan alone (not loaded with bFGF) group, soluble bFGF group, and conditioned medium group served as controls, and we observed the dynamic process of differentiation of BMSCs into neural lineage cells at different time points after the beginning of coculture. We analyzed the binding patterns of bFGF and chitosan and assayed the expression differences of key factors (FGFR1, ERK, and c-fos) and molecular switches (BTG2) that regulate the transformation from cell proliferation to differentiation. We also investigated the potential molecular mechanism of BMSC differentiation into neural lineage cells at a high percentage when induced by bFGF-CCRS.


Cell Differentiation/drug effects , Cell Lineage/drug effects , Fibroblast Growth Factor 2/pharmacology , Mesenchymal Stem Cells/drug effects , Animals , Bone Marrow Cells/drug effects , Cell Proliferation/drug effects , Chitosan/pharmacology , Gene Expression Regulation, Developmental/drug effects , Immediate-Early Proteins/genetics , Mesenchymal Stem Cells/cytology , Mitogen-Activated Protein Kinase 3/genetics , Neural Stem Cells/drug effects , Neurons/drug effects , Proto-Oncogene Proteins c-fos/genetics , Rats , Receptor, Fibroblast Growth Factor, Type 1/genetics , Tumor Suppressor Proteins/genetics
12.
J Biomed Nanotechnol ; 15(4): 703-716, 2019 Apr 01.
Article En | MEDLINE | ID: mdl-30841964

Neural circuit reconstruction is the main target of functional restoration after adult spinal cord injury (SCI). The microenvironment after adult SCI is hostile to neural regeneration. Here, we designed a bFGF controlled releasing system (bFGF-CRS) by loading bFGF onto the sodium hyaluronate collagen scaffolds to modify the hostile microenvironment. We found that the bFGF-CRS scaffolds had proper mechanical properties for spinal cord regeneration and could slowly release bFGF for up to 6 weeks under the physiological condition. After implantation, the bFGF-CRS scaffolds could reduce microglial activation, promote revascularization, elicit endogenous neurogenesis and promote regrowth of transected axons. The endogenous mature newly born neurons could form synaptic-like connections with each other or with host neurons, including cortex neurons, brainstem neurons and spinal interneurons. The functional nascent neural networks between the lesion area and the host spinal cord were established. It eventually led to hindlimb locomotion recovery. Our study suggests that the bFGF-CRS scaffolds, modifying the microenvironment of the lesion area, can rebuild the damaged neural circuit, thus support great potential for SCI treatment in the clinical application.


Spinal Cord Injuries , Animals , Collagen , Fibroblast Growth Factor 2 , Hyaluronic Acid , Nerve Net , Nerve Regeneration , Recovery of Function , Spinal Cord , Tissue Scaffolds
13.
Biomed Res Int ; 2018: 4068156, 2018.
Article En | MEDLINE | ID: mdl-30534561

The purpose of this study was to assess the pathological variation in white matter tracts in the adult severe thoracic contusion spinal cord injury (SCI) rat models combined with in vivo magnetic resonance imaging (MRI), as well as the effect of spared white matter (WM) quantity on hindlimb motor function recovery. 7.0T MRI was conducted for all experimental animals before SCI and 1, 3, 7, and 14 days after SCI. The variation in the white matter tract in different regions of the spinal cord after SCI was examined by luxol fast blue (LFB) staining, NF200 immunochemistry, and diffusion tensor imaging (DTI) parameters, including fraction anisotropy, mean diffusivity, axial diffusion, and radial diffusivity. Meanwhile, Basso-Beattie-Bresnahan (BBB) open-field scoring was performed to evaluate the behavior of the paraplegic hind limbs. The quantitative analysis showed that spared white matter measures assessed by LFB and MRI had a close correlation (R2 = 0.8508). The percentage of spared white matter area was closely correlated with BBB score (R2 = 0.8460). After SCI, spared white matter in the spinal cord, especially the ventral column WM, played a critical role in motor function restoration. The results suggest that the first three days provides a key time window for SCI protection and treatment; spared white matter, especially in the ventral column, plays a key role in motor function recovery in rats. Additionally, DTI may be an important noninvasive technique to diagnose acute SCI degree as well as a tool to evaluate functional prognosis. During the transition from nerve protection toward clinical treatment after SCI, in vivo DTI may serve as an emerging noninvasive technique to diagnose acute SCI degree and predict the degree of spontaneous functional recovery after SCI.


Magnetic Resonance Imaging , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/pathology , White Matter/pathology , Animals , Anisotropy , Axons/metabolism , Blood-Brain Barrier/pathology , Diffusion Tensor Imaging , Female , Hindlimb/pathology , Hindlimb/physiopathology , Motor Activity/physiology , Myelin Sheath/metabolism , Neurofilament Proteins/metabolism , Rats, Wistar , Recovery of Function , Spinal Cord Injuries/physiopathology , Staining and Labeling , Time Factors , White Matter/diagnostic imaging , White Matter/physiopathology
14.
Sheng Li Xue Bao ; 70(2): 106-114, 2018 Apr 25.
Article Zh | MEDLINE | ID: mdl-29691574

The present study was aimed to investigate the electrophysiological characteristics of hippocampal postnatal early development mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in rats. Forty-eight Wistar rats were divided into postnatal 0.5-, 1-, 2- and 3-month groups (n = 12). Spontaneous excitatory postsynaptic currents (sEPSCs) and field excitatory postsynaptic potentials (fEPSPs) mediated by AMPA receptors were recorded to evaluate the changes in the intrinsic membrane properties of hippocampal CA1 pyramidal neurons by using patch-clamp and MED64 planar microelectrode array technique respectively. The results showed that, during the period of postnatal 0.5-3 months, some of the intrinsic membrane properties of hippocampal CA1 pyramidal neurons, such as the membrane capacitance (Cm) and the resting membrane potential (RMP), showed no significant changes, while the membrane input resistance (Rin) and the time constant (τ) of the cells were decreased significantly. The amplitude, frequency and kinetics (both rise and decay times) of sEPSCs were significantly increased during the period of postnatal 0.5-1 month, but they were all decreased during the period of postnatal 1-3 months. In addition, the range of evoked fEPSPs in hippocamal CA1 region was significantly expanded, but the fEPSP amplitudes were decreased significantly during the period of postnatal 0.5-3 months. Furthermore, the evoked fEPSPs could be significantly inhibited by extracellular application of the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These results suggest that AMPA receptor may act as a major type of excitatory receptor to regulate synaptic transmission and connections during the early stage of hippocampal postnatal development, which promotes the development and functional maturation of hippocampus in rats.


CA1 Region, Hippocampal/physiology , Excitatory Postsynaptic Potentials , Pyramidal Cells/physiology , Receptors, AMPA/physiology , Animals , Rats , Rats, Wistar , Synaptic Transmission
15.
Sci China Life Sci ; 61(5): 559-568, 2018 05.
Article En | MEDLINE | ID: mdl-29230638

The present study aimed to explore the potential of the sodium hyaluronate-CNTF (ciliary neurotrophic factor) scaffold in activating endogenous neurogenesis and facilitating neural network re-formation after the adult rat spinal cord injury (SCI). After completely cutting and removing a 5-mm adult rat T8 segment, a sodium hyaluronate-CNTF scaffold was implanted into the lesion area. Dil tracing and immunofluorescence staining were used to observe the proliferation, differentiation and integration of neural stem cells (NSCs) after SCI. A planar multielectrode dish system (MED64) was used to test the electrophysiological characteristics of the regenerated neural network in the lesioned area. Electrophysiology and behavior evaluation were used to evaluate functional recovery of paraplegic rat hindlimbs. The Dil tracing and immunofluorescence results suggest that the sodium hyaluronate-CNTF scaffold could activate the NSCs originating from the spinal cord ependymal, and facilitate their migration to the lesion area and differentiation into mature neurons, which were capable of forming synaptic contact and receiving glutamatergic excitatory synaptic input. The MED64 results suggest that functional synapsis could be established among regenerated neurons as well as between regenerated neurons and the host tissue, which has been evidenced to be glutamatergic excitatory synapsis. The electrophysiology and behavior evaluation results indicate that the paraplegic rats' sensory and motor functions were recovered in some degree. Collectively, this study may shed light on paraplegia treatment in clinics.


Ciliary Neurotrophic Factor/chemistry , Hyaluronic Acid/chemistry , Nerve Net/physiology , Neurogenesis/physiology , Recovery of Function/physiology , Spinal Cord Injuries/therapy , Tissue Scaffolds/chemistry , Animals , Biocompatible Materials/administration & dosage , Biocompatible Materials/chemistry , Cell Movement , Disease Models, Animal , Female , Nerve Net/cytology , Nerve Net/metabolism , Neural Stem Cells/cytology , Rats , Rats, Wistar , Spinal Cord Injuries/pathology , Spinal Cord Injuries/physiopathology
16.
Sci China Life Sci ; 59(12): 1313-1318, 2016 Dec.
Article En | MEDLINE | ID: mdl-27796638

During the whole life cycle of mammals, new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles. Thanks to emerging methodologies, great progress has been made in the characterization of spinal cord endogenous neural stem cells (ependymal cells) and identification of their role in adult spinal cord development. As recently evidenced, both the intrinsic and extrinsic molecular mechanisms of ependymal cells control the sequential steps of the adult spinal cord neurogenesis. This review introduces the concept of adult endogenous neurogenesis, the reaction of ependymal cells after adult spinal cord injury (SCI), the heterogeneity and markers of ependymal cells, the factors that regulate ependymal cells, and the niches that impact the activation or differentiation of ependymal cells.


Neurogenesis , Neurons/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord/physiopathology , Adult , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Humans , Neural Stem Cells/physiology
17.
Acta Biomater ; 45: 182-195, 2016 11.
Article En | MEDLINE | ID: mdl-27562609

The traumatic brain injury (TBI) usually causes brain tissue defects, including neuronal death or loss, which ultimately results in dysfunction in some degree. The cell replacement therapy is now one of the most promising methods for such injury. There are currently various methods to induce the differentiation of stem cells into neurons, but all extremely complex, slow and unstable. Here we report that the sodium hyaluronate collagen scaffold loaded with bFGF (bFGF-controlled releasing system, bFGF-CRS) can induce neural stem cells (NSCs) to differentiate into multi-type and mature functional neurons at a high percentage of 82±1.528% in two weeks. The quantitative real-time (QRT) PCR results reveal that a long-term activation of bFGF receptors could up-regulate ERK/MAPK signal pathways, thus facilitating the formation of presynaptic and postsynaptic structure among the induced neuronal cells (iN cells). The functional synaptic connections established among iN cells were detected by the planar multielectrode dish system. When jointly transplanting the bFGF-CRS and NSCs into the CA1 zone of the rat TBI area, the results suggested that bFGF-CRS provided an optimal microenvironment, which promoted survival, neuronal differentiation of transplanted NSCs and functional synapse formation not only among iN cells but also between iN cells and the host brain tissue in TBI rats, consequently leading to the cognitive function recovery of TBI rats. These findings in vitro and in vivo may lay a foundation for the application of bFGF-CRS and shed light on the delivery of exogenous cells or nutrients to the CNS injury or disease area. STATEMENT OF SIGNIFICANCE: A sodium hyaluronate collagen scaffold was specifically functionalized with nutrient-bFGF which can induce the differentiation of neural stem cells (NSCs) into multi-type and mature functional neurons at a high percentage in two week. When jointly transplanting the bFGF-CRS and NSCs into the CA1 zone of the traumatic brain injured area of adult rats, the bFGF-CRS could provide an optimal microenvironment, which promoted survival, migration and neuronal differentiation of transplanted NSCs and functional synapse formation among iN cells, as well as between iN cells and host brain tissue in TBI rats, consequently leading to the cognitive function recovery of TBI rats.


Brain Injuries, Traumatic/therapy , Cell Differentiation , Collagen/chemistry , Hyaluronic Acid/chemistry , Neural Stem Cells/cytology , Neurons/cytology , Tissue Scaffolds/chemistry , Action Potentials/drug effects , Animals , Animals, Newborn , Brain/pathology , Brain/physiopathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Calorimetry, Differential Scanning , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cognition/drug effects , Delayed-Action Preparations , Fibroblast Growth Factor 2/pharmacology , Gene Expression Regulation/drug effects , Maze Learning/drug effects , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Spectroscopy, Fourier Transform Infrared , Synapses/drug effects , Synapses/metabolism
18.
Regen Biomater ; 3(2): 115-22, 2016 Jun.
Article En | MEDLINE | ID: mdl-27047678

The central nervous system (CNS) has very restricted intrinsic regeneration ability under the injury or disease condition. Innovative repair strategies, therefore, are urgently needed to facilitate tissue regeneration and functional recovery. The published tissue repair/regeneration strategies, such as cell and/or drug delivery, has been demonstrated to have some therapeutic effects on experimental animal models, but can hardly find clinical applications due to such methods as the extremely low survival rate of transplanted cells, difficulty in integrating with the host or restriction of blood-brain barriers to administration patterns. Using biomaterials can not only increase the survival rate of grafts and their integration with the host in the injured CNS area, but also sustainably deliver bioproducts to the local injured area, thus improving the microenvironment in that area. This review mainly introduces the advances of various strategies concerning facilitating CNS regeneration.

...