Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Front Pharmacol ; 13: 1089130, 2022.
Article En | MEDLINE | ID: mdl-36601051

Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in hepatocytes, and in advanced stages, by inflammation and fibrosis. Excessive ROS production due to mitochondrial dysfunction contributes to NAFLD development, making the decrease in mitochondrial ROS production an emerging target to alleviate NAFLD. Previously, we have shown that avocado oil, a source of several bioactive compounds with antioxidant effects, decreases oxidative stress by improving the function of the mitochondrial electron transport chain (ETC) and decreasing ROS levels in mitochondria of diabetic and hypertensive rats. Therefore, we tested in this work whether avocado oil alleviates NAFLD by attenuating mitochondrial dysfunction, oxidative stress and inflammation. NAFLD was induced in rats by a high fat-high fructose (HF) diet administered for six (HF6) or twelve (HF12) weeks. Hepatic steatosis, hypertrophy and inflammation were detected in both the HF6 and HF12 groups. Hyperglycemia was observed only in the HF12 group. The HF6 and HF12 groups displayed dyslipidemia, impairments in mitochondrial respiration, complex III activity, and electron transfer in cytochromes in the complex III. This led to an increase in the levels of ROS and lipid peroxidation. The substitution of the HF6 diet by standard chow and avocado oil for 6 weeks (HF6+AVO + D), or supplementation of the HF12 diet with avocado oil (HF12 + AVO), ameliorated NAFLD, hyperglycemia, dyslipidemia, and counteracted mitochondrial dysfunctions and oxidative stress. The substitution of the HF6 diet by standard chow without avocado oil did not correct many of these abnormalities, confirming that the removal of the HF diet is not enough to counteract NAFLD and mitochondrial dysfunction. In summary, avocado oil decreases NAFLD by improving mitochondrial function, oxidative stress, and inflammation.

2.
Life (Basel) ; 11(11)2021 Oct 21.
Article En | MEDLINE | ID: mdl-34832999

Hypertension impairs the function of the kidney and its vasculature. Adrenergic activation is involved in these processes by promoting oxidative stress and mitochondrial dysfunction. Thus, the targeting of mitochondrial function and mitochondrial oxidative stress may be an approach to alleviate hypertensive kidney damage. Avocado oil, a source of oleic acid and antioxidants, improves mitochondrial dysfunction, decreases mitochondrial oxidative stress, and enhances vascular function in hypertensive rats. However, whether avocado oil improves the function of renal vasculature during the adrenergic stimulation, and if this is related to improvement in renal damage and enhancement of mitochondrial activity is unknown. Thus, the effects of avocado oil on renal vascular responses to adrenergic stimulation, mitochondrial dysfunction, oxidative stress, and renal damage were compared with prazosin, an antagonist of α1-adrenoceptors, in hypertensive rats induced by L-NAME. Avocado oil or prazosin decreased blood pressure, improved endothelium-dependent renal vasodilation, prevented mitochondrial dysfunction and kidney damage in hypertensive rats. However, avocado oil, but not prazosin, decreased mitochondrial ROS generation and improved the redox state of mitochondrial glutathione. These results suggest that avocado oil and prazosin prevented hypertensive renal damage due to the improvement in mitochondrial function.

3.
Lipids Health Dis ; 18(1): 78, 2019 Mar 30.
Article En | MEDLINE | ID: mdl-30927921

BACKGROUND: High fat or fructose induces non-alcoholic fatty liver disease (NAFLD) accompanied of mitochondrial dysfunction and oxidative stress. Controversy remains about whether fructose or fat is more deleterious for NAFLD development. To get more insights about this issue and to determine if the severity of liver disease induced by fructose or fat is related to degree of mitochondrial dysfunction, we compared the effects of diets containing high fat (HF), fructose (Fr) or high fat plus fructose (HF + Fr) on NAFLD development, mitochondrial function, ROS production and lipid peroxidation. METHODS: Wistar rats were assigned to four groups: Control, fed with standard rodent chow; High fat (HF), supplemented with lard and hydrogenated vegetable oil; Fructose (Fr), supplemented with 25% fructose in the drinking water; High fat plus fructose group (HF + Fr), fed with both HF and Fr diets. Rats were sacrificed after 6 weeks of diets consumption and the liver was excised for histopathological analysis by hematoxylin and eosin staining and for mitochondria isolation. Mitochondrial function was evaluated by measuring both mitochondrial respiration and complex I activity. Lipid peroxidation and ROS production were evaluated in mitochondria by the thiobarbituric acid method and with the fluorescent ROS probe 2,4-H2DCFDA, respectively. RESULTS: Fr group underwent the lower degree of both liver damage and mitochondrial dysfunction that manifested like less than 20% of hepatocytes with microvesicular steatosis and partial decrease in state 3 respiration, respectively. HF group displayed an intermediate degree of damage as it showed 40% of hepatocytes with microvesicular steatosis and diminution of both state 3 respiration and complex I activity. HF + Fr group displayed more severe damage as showed microvesicular steatosis in 60% of hepatocytes and inflammation, while mitochondria exhibited fully inhibited state 3 respiration, impaired complex I activity and increased ROS generation. Exacerbation of mitochondrial lipid peroxidation was observed in both the Fr and HF + Fr groups. CONCLUSION: Severity of liver injury induced by fructose or fat was related to the degree of dysfunction and oxidative damage in mitochondria. Attention should be paid on the serious effects observed in the HF + Fr group as the typical Western diet is rich in both fat and carbohydrates.


Fructose/administration & dosage , Inflammation/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Stress/drug effects , Animals , Diet, High-Fat/adverse effects , Dietary Fats/administration & dosage , Dietary Fats/adverse effects , Dietary Supplements/adverse effects , Fructose/adverse effects , Hepatocytes/drug effects , Humans , Inflammation/etiology , Inflammation/pathology , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/injuries , Liver/pathology , Mitochondria, Liver/drug effects , Mitochondria, Liver/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Rats
4.
J Bioenerg Biomembr ; 49(2): 205-214, 2017 Apr.
Article En | MEDLINE | ID: mdl-28214972

Hyperglycemia and mitochondrial ROS overproduction have been identified as key factors involved in the development of diabetic nephropathy. This has encouraged the search for strategies decreasing glucose levels and long-term improvement of redox status of glutathione, the main antioxidant counteracting mitochondrial damage. Previously, we have shown that avocado oil improves redox status of glutathione in liver and brain mitochondria from streptozotocin-induced diabetic rats; however, the long-term effects of avocado oil and its hypoglycemic effect cannot be evaluated because this model displays low survival and insulin depletion. Therefore, we tested during 1 year the effects of avocado oil on glycemia, ROS levels, lipid peroxidation and glutathione status in kidney mitochondria from type 2 diabetic Goto-Kakizaki rats. Diabetic rats exhibited glycemia of 120-186 mg/dL the first 9 months with a further increase to 250-300 mg/dL. Avocado oil decreased hyperglycemia at intermediate levels between diabetic and control rats. Diabetic rats displayed augmented lipid peroxidation and depletion of reduced glutathione throughout the study, while increased ROS generation was observed at the 3rd and 12th months along with diminished content of total glutathione at the 6th and 12th months. Avocado oil ameliorated all these defects and augmented the mitochondrial content of oleic acid. The beneficial effects of avocado oil are discussed in terms of the hypoglycemic effect of oleic acid and the probable dependence of glutathione transport on lipid peroxidation and thiol oxidation of mitochondrial carriers.


Diabetes Mellitus, Experimental/complications , Glutathione/metabolism , Mitochondrial Diseases/drug therapy , Oxidative Stress/drug effects , Persea/chemistry , Plant Oils/pharmacology , Animals , Hypoglycemic Agents , Kidney/ultrastructure , Lipid Peroxidation , Rats , Reactive Oxygen Species
...