Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ind Eng Chem Res ; 62(7): 3282-3293, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36853619

RESUMEN

Surfactant-enhanced aquifer remediation is commonly applied in polluted sites with dense non-aqueous phase liquids (DNAPLs). This technique transfers the contamination from subsoil to an extracted emulsion, which requires further treatment. This work investigated the treatment of a complex emulsion composed of a nonionic surfactant and real DNAPL formed of chlorinated organic compounds (COCs) and generated as a lindane production waste by air stripping under alkaline conditions. The influence of the surfactant (1.5-15 g·L-1), COC concentrations (2.3-46.9 mmol·L-1), and temperature (30-60 °C) on the COC volatilization was studied and modeled in terms of an apparent constant of Henry at pH > 12. In addition, the surfactant stability was studied as a function of temperature (20-60 °C) and surfactant (2-10 g·L-1), COC (0-70.3 mmol·L-1), and NaOH (0-4 g·L-1) concentrations. A kinetic model was successfully proposed to explain the loss of surfactant capacity (SCL). The results showed that alkali and temperature caused the SCL by hydrolysis of the surfactant molecule. The increasing surfactant concentration decreased the COC volatility, whereas the temperature improved the COC volatilization. Finally, the volatilization of COCs in alkaline emulsions by air stripping (3 L·h-1) was performed to evaluate the treatment of an emulsion composed of the COCs (17.6 mmol·kg-1) and surfactant (3.5 and 7 g·L-1). The air stripping was successfully applied to remove COCs (>90%), reaching an SCL of 80% at 60 °C after 8 h. Volatilization can remove COCs from emulsions and break them, enhancing their further disposal.

2.
Molecules ; 27(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558105

RESUMEN

The discharge of lindane wastes in unlined landfills causes groundwater and soil pollution worldwide. The liquid waste generated (a mixture of 28 chlorinated organic compounds, COCs) constitutes a dense non-aqueous phase liquid (DNAPL) that is highly persistent. Although in situ chemical oxidation (ISCO) is effective for degrading organic pollutants, the low COCs solubility requires high reaction times. Simultaneous injection of surfactants and oxidants (S-ISCO) is a promising technology to solve the limitation of ISCO treatment. The current work studies the remediation of highly polluted soil (COCs = 3682 mg/kg) obtained at the Sardas landfill (Sabiñáñigo, Spain) by ISCO and S-ISCO treatments. Special attention is paid to acute soil toxicity before and after the soil treatment. Microtox®, modified Basic Solid-Phase Test (mBSPT) and adapted Organic Solvent Sample Solubilization Test (aOSSST) were used for this scope. Persulfate (PS, 210 mM) activated by alkali (NaOH, 210 mM) was used in both ISCO and S-ISCO runs. A non-ionic and biodegradable surfactant selected in previous work, Emulse®3 (E3, 5, and 10 g/L), was applied in S-ISCO experiments. Runs were performed in soil columns filled with 50 g of polluted soil, with eight pore volumes (Pvs) of the reagents injected and 96 h between successive Pv injections. The total treatment time was 32 days. The results were compared with those corresponding without surfactant (ISCO). After remediation treatments, soils were water-washed, simulating the conditions of groundwater flux in the subsoil. The treatments applied highly reduced soil toxicity (final soil toxicity equivalent to that obtained for non-contaminated soil, mBSPT) and organic extract toxicity (reduction > 95%, aOSSST). Surfactant application did not cause an increase in the toxicity of the treated soil, highlighting its suitability for full-scale applications.


Asunto(s)
Agua Subterránea , Surfactantes Pulmonares , Contaminantes del Suelo , Contaminantes Químicos del Agua , Hexaclorociclohexano/toxicidad , Tensoactivos/toxicidad , Contaminación Ambiental , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Suelo/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/química , Agua Subterránea/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-35742796

RESUMEN

Surfactant enhanced aquifer remediation is a common treatment to remediate polluted sites with the inconvenience that the effluent generated must be treated. In this work, a complex mixture of chlorobenzene and dichlorobenzenes in a non-ionic surfactant emulsion has been carried out by volatilization. Since this techhnique is strongly affected by the presence of the surfactant, modifying the vapour pressure, Pv0, and activity coefficient, γ, a correlation between Pvj0γj and surfactant concentration and temperature was proposed for each compound, employing the Surface Response Methodology (RSM). Volatilization experiments were carried out at different temperatures and gas flow rates. A good agreement between experimental and predicted remaining SVCOCs during the air stripping process was obtained, validating the thermodynamic parameters obtained with RSM. Regarding the results of volatilization, at 60 °C 80% of SVCOCs were removed after 6 h, and the surfactant capacity was almost completely recovered so the solution can be recycled in soil flushing.

4.
J Environ Manage ; 306: 114475, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033888

RESUMEN

Sites polluted by dense non-aqueous phases (DNAPLs) constitute an environmental concern. In situ chemical oxidation (ISCO) application is limited since oxidation often occurs in the aqueous phase and contaminants are usually hydrophobic. In this work, ISCO enhanced by the surfactant addition (S-ISCO) was studied for a complex liquid mixture of chlorinated organic compounds (COCs) using persulfate (PS) activated by alkali (PSA) as oxidant and Emulse-3® as a commercial non-ionic surfactant. The reaction between E3 and PSA was investigated in the absence and presence of solubilized COCs in the following concentration ranges: COCs 1.2-50 mM, PS 84-336 mM, NaOH:PS molar ratio of 2, and surfactant concentration 1-10 g·L-1. In the experiments carried out in the absence of COCs, the unproductive consumption of PS was studied. The higher the surfactant concentration, the lower the ratio PS consumed to the initial surfactant concentration due to more complex micelle structures hindering the oxidation of surfactant molecules. This hindering effect was also noticed in the oxidation of solubilized COCs. The reduction of chlorobenzenes by PSA was negligible at surfactant concentrations above 2.5 g·L-1, independently of the COCs concentration solubilized. Instead, a surfactant concentration of about 1 and PS concentration of 168 mM yielded a significant decrease in the time required to abate a mass of DNAPL, compared with an ISCO process, with a bearable increase in the unproductive consumption of PS.


Asunto(s)
Tensoactivos , Contaminantes Químicos del Agua , Álcalis , Clorobencenos , Compuestos Orgánicos , Oxidación-Reducción , Sulfatos , Contaminantes Químicos del Agua/análisis
5.
Sci Total Environ ; 751: 141782, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32882562

RESUMEN

Surfactant Enhanced In-Situ Chemical Oxidation (S-ISCO) is an emerging technology in the remediation of sites with residual Dense Non-Aqueous Phase Liquids (DNAPLs), a ubiquitous problem in the environment and a challenge to solve. In this work, three nonionic surfactants: E-Mulse3® (E3), Tween80 (T80), and a mixture of Tween80-Span80 (TS80), and an anionic surfactant: sodium dodecyl sulfate (SDS), combined with persulfate activated by alkali (PSA) as oxidant have been investigated to remove the DNAPL generated as liquid waste in lindane production, which is composed of 28 chlorinated organic compounds (COCs). Because the compatibility between surfactants and oxidants is a key aspect in the S-ISCO effectiveness the unproductive consumption of PS by surfactants was investigated in batch (up to 864 h) varying the initial concentration of PS (84-42 mmol·L-1) and surfactants (0-12 g·L-1) and the NaOH:PS molar ratio (1 and 2). The solubilization capacity of a partially oxidized surfactant was analyzed by estimating its Equivalent Surfactant Capacity, ESC, (as mmolCOCs dissolvedgsurf-1) and comparing it to the expected value for an unoxidized surfactant, ESCo. Finally, the abatement of DNAPL with simultaneous addition of surfactant and PSA was studied. At the conditions used, a negligible unproductive consumption of PS was found by SDS; meanwhile, PS consumption at 360 h ranged between 70 and 80% using the nonionic surfactants. The highest ratios of ESC/ESCo were found with SDS and E3 and these surfactants were chosen for the S-ISCO treatment. When oxidant and surfactant were simultaneously applied for DNAPL abatement the COC conversion was more than three times higher with E3 (0.6 at 360 h) than SDS. Moreover, it was obtained that the time needed for the removal of a mass of DNAPL by PSA in the absence of surfactants was notably higher than the time required when a suitable surfactant was added.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32585799

RESUMEN

Application of surfactants in the remediation of polluted sites with dense nonaqueous phase liquid (DNAPL) still requires knowledge of partitioning between surfactants and pollutants in the organic and aqueous phases and the time necessary to reach this balance. Two real DNAPLs, generated as wastes in the lindane production and taken from the polluted sites from Sabiñanigo (Spain), were used for investigating the solubilization of 28 chlorinated organic compounds (COCs) applying aqueous surfactant solutions of three nonionic surfactants (E-Mulse® 3 (E3), Tween®80 (T80), and a mixture of Tween®80-Span®80 (TS80)) and an anionic surfactant (sodium dodecyl sulfate (SDS)). The initial concentrations of surfactants were tested within the range of 3-17 g·L-1. The pH was also modified from 7 to >12. The uptake of nonionic surfactants into the organic phase was higher than the anionic surfactants. Solubilization of COCs with the nonionic surfactants showed similar molar solubilization ratios (MSR = 4.33 mmolCOCs·g-1surf), higher than SDS (MSR = 0.70 mmolCOCs·g-1SDS). Furthermore, under strong alkaline conditions, the MSR value of the nonionic surfactants was unchanged, and the MSR of SDS value increased (MSR = 1.32 mmolCOCs·g-1SDS). The nonionic surfactants did not produce preferential solubilization of COCs; meanwhile, SDS preferentially dissolved the more polar compounds in DNAPL. The time required to reach phase equilibrium was between 24 and 48 h, and this contact time should be assured to optimize the effect of the surfactant injected on COC solubilization.


Asunto(s)
Hexaclorociclohexano , Tensoactivos , Concentración de Iones de Hidrógeno , Dodecil Sulfato de Sodio , Solubilidad
7.
Chemosphere ; 239: 124798, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31527006

RESUMEN

Hexachlorocyclohexane (HCH) and mainly the γ-HCH isomer, namely lindane, were extensively produced and used as pesticides. Huge amounts of wastes, solids and liquids, were disposed of in the surroundings of the production sites. The liquid residuum was a complex mixture of chlorinated organic compounds, COCs, from chlorobenzene to heptachlorocyclohexane. This Dense Non-Aqueous Phase Liquid, DNAPL, migrated by density through the subsurface to greater depths, being trapped or adsorbed into the soil in this movement posing a significant risk to the groundwater. Knowledge of the partitioning in water of COCs in DNAPL is a key issue to determine its fate in the environment. However, there are no data in literature for the partitioning and/or solubility of many of the COCs in this DNAPL, such as pentachlorocyclohexene, hexachlorocyclohexene and heptachlorocyclohexane despite them constitute about 13-30% of the mole fraction of the DNAPLs. In this work, the partitioning to water of COCs in free and those adsorbed onto soil has been studied. In addition, measured and predicted aqueous concentrations of each COC in the DNAPL mixture have been compared. To do this, the solubility of a compound that is a solid crystal when pure at P = 298 K and P = 1 atm has been evaluated considering the approach of sub-cooled liquid state of solid organochlorines. Samples were obtained at Sabiñanigo landfills and soils used had several grain sizes. Transformation in alkaline media of COCs had a positive environmental impact.


Asunto(s)
Hexaclorociclohexano , Hidrocarburos Clorados/química , Contaminantes del Suelo/química , Halogenación , Hexaclorociclohexano/análogos & derivados , Hexaclorociclohexano/química , Solubilidad , España , Instalaciones de Eliminación de Residuos , Agua/química , Contaminantes Químicos del Agua/química
8.
Heliyon ; 5(11): e02875, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31768444

RESUMEN

Sites contaminated by Dense Non-Aqueous Liquid Phases (DNAPLs) containing chlorinated compounds are a ubiquitous problem caused by spills or the dumping of wastes with no concern for the environment. Their migration by gravity through the subsurface and their accumulation far below ground level make in-situ treatments the most appropriate remediation technologies. In this work, an aqueous solution containing a non-ionic and biodegradable surfactant was injected in the Sardas alluvial layer contaminated at some points with DNAPL (formed by a mixture of more than 28 chlorinated compounds) from lindane production. A volume of 5.28 m3 of an aqueous surfactant emulsion (13 g L-1) was injected at 14.5 m b g.l in the permeable layer (gravel-sand), at a flow rate of 0.6 m3 h-1 and the groundwater was monitored within a test cell (3.5 m radius) built ad hoc. The flow of the injected fluids in the subsurface was also evaluated using a conservative tracer, bromide (130 mg L-1), added to the surfactant solution. Concentration of contaminants, chloride, bromide and surfactant, surface tension and conductivity were measured at the injection point and at three monitoring points over time. High radial dispersion was noticed resulting in high dilution of the injected fluids. The surfactant was not adsorbed in the soil during the injection time, the adsorption of the surfactant took place in the meantime (15 h) between its injection and the groundwater (GW) extraction. The concentration of chlorinated compounds dissolved from the soil in the surfactant aqueous phase when equilibrium was reached (about 850 mg L-1) is related to the moderate average contamination of the soil in the test cell (about 1230 mg kg-1). In contrast, the extraction of the free DNAPL in the altered marls layer was highly enhanced due to the addition of the surfactant. Finally, it was found that the surfactant and the contamination did not migrate from the capture zone.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA