Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732094

This article reviews the role of fibroblast growth factor 23 (FGF23) protein in phosphate metabolism, highlighting its regulation of vitamin D, parathyroid hormone, and bone metabolism. Although it was traditionally thought that phosphate-calcium homeostasis was controlled exclusively by parathyroid hormone (PTH) and calcitriol, pathophysiological studies revealed the influence of FGF23. This protein, expressed mainly in bone, inhibits the renal reabsorption of phosphate and calcitriol formation, mediated by the α-klotho co-receptor. In addition to its role in phosphate metabolism, FGF23 exhibits pleiotropic effects in non-renal systems such as the cardiovascular, immune, and metabolic systems, including the regulation of gene expression and cardiac fibrosis. Although it has been proposed as a biomarker and therapeutic target, the inhibition of FGF23 poses challenges due to its potential side effects. However, the approval of drugs such as burosumab represents a milestone in the treatment of FGF23-related diseases.


Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Phosphates , Humans , Fibroblast Growth Factor-23/metabolism , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/genetics , Animals , Phosphates/metabolism , Parathyroid Hormone/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Vitamin D/metabolism , Bone and Bones/metabolism , Klotho Proteins
2.
Clin Chem Lab Med ; 62(1): 128-137, 2024 01 26.
Article En | MEDLINE | ID: mdl-37440753

OBJECTIVES: Since the prevalence of hypophosphatasia (HPP), a rare genetic disease, seems to be underestimated in clinical practice, in this study, a new diagnostic algorithm to identify missed cases of HPP was developed and implemented. METHODS: Analytical determinations recorded in the Clinical Analysis Unit of the Hospital Universitario Clínico San Cecilio in the period June 2018 - December 2020 were reviewed. A new clinical algorithm to detect HPP-misdiagnosed cases was used including the following steps: confirmation of persistent hypophosphatasemia, exclusion of secondary causes of hypophosphatasemia, determination of serum pyridoxal-5'-phosphate (PLP) and genetic study of ALPL gene. RESULTS: Twenty-four subjects were selected to participate in the study and genetic testing was carried out in 20 of them following clinical algorithm criteria. Eighty percent of patients was misdiagnosed with HPP following the current standard clinical practice. Extrapolating these results to the current Spanish population means that there could be up to 27,177 cases of undiagnosed HPP in Spain. In addition, we found a substantial proportion of HPP patients affected by other comorbidities, such as autoimmune diseases (∼40 %). CONCLUSIONS: This new algorithm was effective in detecting previously undiagnosed cases of HPP, which appears to be twice as prevalent as previously estimated for the European population. In the near future, our algorithm could be globally applied routinely in clinical practice to minimize the underdiagnosis of HPP. Additionally, some relevant findings, such as the high prevalence of autoimmune diseases in HPP-affected patients, should be investigated to better characterize this disorder.


Autoimmune Diseases , Hypophosphatasia , Humans , Hypophosphatasia/diagnosis , Hypophosphatasia/epidemiology , Hypophosphatasia/complications , Alkaline Phosphatase , Genetic Testing , Mutation
3.
Cardiovasc Diabetol ; 22(1): 301, 2023 11 02.
Article En | MEDLINE | ID: mdl-37919715

BACKGROUND: Sclerostin is an inhibitor of the Wnt/b-catenin pathway, which regulates bone formation, and can be expressed in vascular smooth muscle cells (VSMCs). Type 2 diabetes (T2D) is associated with an increased risk of cardiovascular disease (CVD) and increased serum and tissue expression of sclerostin. However, whether the role of sclerostin is detrimental or protective in the development of CVD is unknown. Therefore, our aims are to determine the level of sclerostin in T2D patients with/without CVD and in controls, both at serum and vascular tissue, and to analyze the role of sclerostin in VSMCs under calcified environments. METHODS: Cross-sectional study including 121 controls and 139 T2D patients with/without CVD (48/91). Sclerostin levels in serum were determined by ELISA, and sclerostin expression was analyzed by RT-qPCR and immunohistochemistry in calcified and non-calcified artery of lower limb from T2D patients (n = 7) and controls (n = 3). In vitro experiments were performed in VSMCs (mock and sclerostin overexpression) under calcifying conditions analyzing the sclerostin function by determination of calcium and phosphate concentrations, and quantification of calcium deposits by Alizarin Red. Proliferation and apoptosis were analyzed by MTT assay and flow cytometry, respectively. The regulation of the expression of genes involved in bone metabolism was determined by RT-qPCR. RESULTS: A significant increase in serum sclerostin levels in T2D patients with CVD compared to T2D patients without CVD and controls (p < 0.001) was observed. Moreover, higher circulating sclerostin levels were independently associated with CVD in T2D patients. Increased sclerostin expression was observed in calcified arteries of T2D patients compared to non-calcified arteries of controls (p = 0.003). In vitro experiments using VSMCs under calcified conditions, revealed that sclerostin overexpression reduced intracellular calcium (p = 0.001), calcium deposits (p < 0.001), cell proliferation (p < 0.001) and promoted cell survival (p = 0.015). Furthermore, sclerostin overexpression exhibited up-regulation of ALPL (p = 0.009), RUNX2 (p = 0.001) and COX2 (p = 0.003) and down-regulation of inflammatory genes, such as, IL1ß (p = 0.005), IL6 (p = 0.001) and IL8 (p = 0.003). CONCLUSIONS: Sclerostin could play a protective role in the development of atherosclerosis in T2D patients by reducing calcium deposits, decreasing proliferation and inflammation, and promoting cell survival in VSMCs under calcifying conditions. Therefore, considering the bone-vascular axis, treatment with anti-sclerostin for bone disease should be used with caution.


Atherosclerosis , Diabetes Mellitus, Type 2 , Vascular Calcification , Humans , Muscle, Smooth, Vascular/metabolism , Calcium/metabolism , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/metabolism , Cross-Sectional Studies , Atherosclerosis/metabolism , Apoptosis , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Vascular Calcification/genetics , Cells, Cultured
4.
Am J Physiol Endocrinol Metab ; 325(5): E649-E660, 2023 11 01.
Article En | MEDLINE | ID: mdl-37819194

Osteoglycin, a fundamental proteoglycan within the vascular extracellular matrix, is expressed in vascular smooth muscle cells (VSMCs). Type 2 diabetes (T2D) is associated with cardiovascular disease (CVD) but the role of osteoglycin in the development of CVD is controversial to date. Therefore, our aims are to determine and compare the level of osteoglycin in T2D patients with/without CVD versus control subjects both at serum and vascular tissue and to analyze in vitro role of osteoglycin in VSMCs under calcified conditions. For this, serum osteoglycin levels were determined by enzyme-linked immunosorbent assay (ELISA) in 117 controls and 129 patients with T2D (46 with CVD and 83 without CVD), revealing a significant increase in patients with T2D compared with controls. Osteoglycin level was not an estimator of CVD but correlated with markers of insulin resistance (triglycerides and triglycerides/high-density lipoprotein cholesterol index) in patients with T2D. At the vascular level, osteoglycin expression was assessed by RT-qPCR and immunohistochemistry, and no significant differences were observed between calcified arteries from patients with T2D and noncalcified arteries from controls. In vitro experiments using VSMCs (mock and overexpressing osteoglycin) under calcifying conditions were performed to analyze the osteoglycin function. The overexpression of osteoglycin in VMSCs under calcifying conditions revealed an increase of cell proliferation without effect on apoptosis and an upregulation of the expression of autotaxin (ATX) involved in inflammatory processes. In conclusion, osteoglycin could play a role in glycemic homeostasis, being a potential biomarker of insulin resistance in patients with T2D. Furthermore, osteoglycin could indirectly participate in the development of atherosclerosis through its regulatory effect on ATX and by proliferating VSMCs.NEW & NOTEWORTHY This study uncovers an increase of serum osteoglycin levels in patients with type 2 diabetes, which does not appear to be associated with the development of atherosclerosis, but rather with insulin resistance in this population. Overexpression of osteoglycin increased proliferation and upregulated the expression of autotaxin in vascular smooth muscle cells within calcified environments. Osteoglycin could be a biomarker of insulin resistance for type 2 diabetes and could be indirectly involved in the development of atherosclerosis.


Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Diabetes Mellitus, Type 2/metabolism , Muscle, Smooth, Vascular , Atherosclerosis/metabolism , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Triglycerides/metabolism , Myocytes, Smooth Muscle/metabolism
5.
Nutrients ; 15(14)2023 Jul 20.
Article En | MEDLINE | ID: mdl-37513646

Diet is a modifiable factor in bone and muscle health. The Mediterranean diet (MedDiet) is rich in nutrients and contains key bioactive components with probable protective effects on muscle and bone deterioration. Osteoporosis (OP) and sarcopenia are diseases that increase frailty and susceptibility to fracture, morbidity and mortality. Therefore, it is necessary to combat them in the population. In this regard, MedDiet adherence has proven to be beneficial to bone mineral density (BMD), muscle mass, physical function, OP and sarcopenia. Hence, this diet is proposed as a therapeutic tool that could slow the onset of osteoporosis and sarcopenia. However, there is doubt about the interaction between the MedDiet, strength and fracture risk. Perhaps the amount of EVOO (extra virgin olive oil), fruits, vegetables and fish rich in anti-inflammatory and antioxidant nutrients ingested has an influence, though the results remain controversial.


Diet, Mediterranean , Fractures, Bone , Osteoporosis , Sarcopenia , Animals , Sarcopenia/prevention & control , Sarcopenia/epidemiology , Osteoporosis/prevention & control , Osteoporosis/epidemiology , Bone Density , Olive Oil
6.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article En | MEDLINE | ID: mdl-36901921

The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.


Diet, Mediterranean , Healthy Aging , Quality of Life , Diet , Life Expectancy
7.
Int J Mol Sci ; 24(4)2023 Feb 18.
Article En | MEDLINE | ID: mdl-36835545

Non-alcoholic fatty liver disease (NAFLD) seems to have some molecular links with atherosclerosis (ATH); however, the molecular pathways which connect both pathologies remain unexplored to date. The identification of common factors is of great interest to explore some therapeutic strategies to improve the outcomes for those affected patients. Differentially expressed genes (DEGs) for NAFLD and ATH were extracted from the GSE89632 and GSE100927 datasets, and common up- and downregulated DEGs were identified. Subsequently, a protein-protein interaction (PPI) network based on the common DEGs was performed. Functional modules were identified, and the hub genes were extracted. Then, a Gene Ontology (GO) and pathway analysis of common DEGs was performed. DEGs analysis in NAFLD and ATH showed 21 genes that were regulated similarly in both pathologies. The common DEGs with high centrality scores were ADAMTS1 and CEBPA which appeared to be down- and up-regulated in both disorders, respectively. For the analysis of functional modules, two modules were identified. The first one was oriented to post-translational protein modification, where ADAMTS1 and ADAMTS4 were identified, and the second one mainly related to the immune response, where CSF3 was identified. These factors could be key proteins with an important role in the NAFLD/ATH axis.


Atherosclerosis , Non-alcoholic Fatty Liver Disease , Humans , Atherosclerosis/genetics , Computational Biology , Gene Expression Profiling , Gene Regulatory Networks , Non-alcoholic Fatty Liver Disease/genetics , Protein Interaction Maps
8.
Postgrad Med ; 135(3): 195-207, 2023 Apr.
Article En | MEDLINE | ID: mdl-34886758

The pandemic caused by the SARS-CoV-2 virus has triggered great interest in the search for the pathophysiological mechanisms of COVID-19 and its associated hyperinflammatory state. The presence of prognostic factors such as diabetes, cardiovascular disease, hypertension, obesity, and age influence the expression of the disease's clinical severity. Other elements, such as 25-hydroxyvitamin D (25(OH)D3) concentrations, are currently being studied. Various studies, mostly observational, have sought to demonstrate whether there is truly a relationship between 25(OH)D3 levels and the acquisition and/or severity of the disease. The objective of this study was to carry out a review of the current data that associate vitamin D status with the acquisition, evolution, and/or severity of infection by the SARS-CoV-2 virus and to assess whether prevention through vitamin D supplementation can prevent infection and/or improve the evolution once acquired. Vitamin D system has an immunomodulatory function and plays a significant role in various bacterial and viral infections. The immune function of vitamin D is explained in part by the presence of its receptor (VDR) and its activating enzyme 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1) in immune cells. The vitamin D, VDR, and Retinoid X Receptor complex allows the transcription of genes with antimicrobial activities, such as cathelicidins and defensins. COVID-19 characteristically presents a marked hyperimmune state, with the release of proinflammatory cytokines such as IL-6, TNF-α, and IL-1ß. Thus, there are biological factors linking vitamin D to the cytokine storm, which can herald some of the most severe consequences of COVID-19, such as acute respiratory distress syndrome. Hypovitaminosis D is widespread worldwide, so the prevention of COVID-19 through vitamin D supplementation is being considered as a possible therapeutic strategy easy to implement. However, more-quality studies and well-designed randomized clinical trials are needed to address this relevant question.


COVID-19 , Humans , SARS-CoV-2 , Vitamin D/therapeutic use
9.
Front Endocrinol (Lausanne) ; 14: 1320516, 2023.
Article En | MEDLINE | ID: mdl-38234425

Introduction: Hypophosphatasia (HPP) is an inborn metabolic error caused by mutations in the ALPL gene encoding tissue non-specific alkaline phosphatase (TNSALP) and leading to decreased alkaline phosphatase (ALP) activity. Although the main characteristic of this disease is bone involvement, it presents a great genetic and clinical variability, which makes it a systemic disease. Methods: Patients were recruited based on biochemical assessments. Diagnosis was made by measuring serum ALP and pyridoxal 5-phosphate levels and finally by Sanger sequencing of the ALPL gene from peripheral blood mononuclear cells. Characterization of the new variants was performed by transfection of the variants into HEK293T cells, where ALP activity and cellular localization were measured by flow cytometry. The dominant negative effect was analyzed by co-transfection of each variant with the wild-type gene, measuring ALP activity and analyzing cellular localization by flow cytometry. Results: Two previously undescribed variants were found in the ALPL gene: leucine 6 to serine missense mutation (c.17T>C, L6S) affecting the signal peptide and threonine 167 deletion (c.498_500delCAC, T167del) affecting the vicinity of the active site. These mutations lead mainly to non-pathognomonic symptoms of HPP. Structural prediction and modeling tools indicated the affected residues as critical residues with important roles in protein structure and function. In vitro results demonstrated low TNSALP activity and a dominant negative effect in both mutations. The results of the characterization of these variants suggest that the pleiotropic role of TNSALP could be involved in the systemic effects observed in these patients highlighting digestive and autoimmune disorders associated with TNSALP dysfunction. Conclusions: The two new mutations have been classified as pathogenic. At the clinical level, this study suggests that both mutations not only lead to pathognomonic symptoms of the disease, but may also play a role at the systemic level.


Hypophosphatasia , Humans , Hypophosphatasia/genetics , Hypophosphatasia/pathology , Alkaline Phosphatase , HEK293 Cells , Leukocytes, Mononuclear/metabolism , Mutation
10.
Article En | MEDLINE | ID: mdl-36498053

Sclerostin is most recognized for its role in controlling bone formation; however, it is also expressed in the heart, aorta, coronary, and peripheral arteries. Human studies have associated high circulating sclerostin levels with the presence of different cardiovascular diseases (CVD), surrogate CVD markers, and a high risk of cardiovascular events in some populations. However, this is still a matter of scientific debate, as the results have been very heterogeneous among studies. In the present review, the association between serum sclerostin levels and CVD and/or cardiovascular mortality was analyzed. For this purpose, a scoping review was performed in which articles measuring serum sclerostin levels and cardiovascular risk in patients were selected. Eleven articles answered the research question; of these articles, 8/11 evaluated the association between sclerostin and CVD, of which 4/8 found a positive association, 2/8 found a negative association, and 2/8 found no association between variables. Five (5/11) of the articles included in the study evaluated cardiovascular mortality, of which 3/5 found a positive association, 1/5 found a negative association, and 1/5 found no association between variables. In conclusion, we did not find sufficient results to be able to demonstrate an association between elevated sclerostin levels and the development of CVD and/or cardiovascular mortality in the general population due to heterogeneity in the results. However, there seems to be a tendency to consider increased sclerostin levels as a risk factor for both the development of cardiovascular events and cardiovascular mortality in specific populations. Further studies in this field will help to solve some of the inconsistencies found during this scoping review and allow for the future use of sclerostin measurement as a strategy in the prevention and diagnosis of CVD and/or cardiovascular mortality.


Cardiovascular Diseases , Humans , Cardiovascular Diseases/epidemiology , Bone Morphogenetic Proteins , Genetic Markers , Biomarkers , Risk Factors
11.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article En | MEDLINE | ID: mdl-35955431

Recent scientific evidence has shown an increased risk of fractures in patients with obesity, especially in those with a higher visceral adipose tissue content. This contradicts the old paradigm that obese patients were more protected than those with normal weight. Specifically, in older subjects in whom there is a redistribution of fat from subcutaneous adipose tissue to visceral adipose tissue and an infiltration of other tissues such as muscle with the consequent sarcopenia, obesity can accentuate the changes characteristic of this age group that predisposes to a greater risk of falls and fractures. Other factors that determine a greater risk in older subjects with obesity are chronic proinflammatory status, altered adipokine secretion, vitamin D deficiency, insulin resistance and reduced mobility. On the other hand, diagnostic tests may be influenced by obesity and its comorbidities as well as by body composition, and risk scales may underestimate the risk of fractures in these patients. Weight loss with physical activity programs and cessation of high-fat diets may reduce the risk. Finally, more research is needed on the efficacy of anti-osteoporotic treatments in obese patients.


Bone Density , Insulin Resistance , Aged , Humans , Intra-Abdominal Fat , Obesity/complications , Subcutaneous Fat
12.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article En | MEDLINE | ID: mdl-35805996

Vascular complications are the leading cause of morbidity and mortality among patients with type 2 diabetes mellitus (T2DM). These vascular abnormalities result in a chronic hyperglycemic state, which influences many signaling molecular pathways that initially lead to increased oxidative stress, increased inflammation, and endothelial dysfunction, leading to both microvascular and macrovascular complications. Endothelial dysfunction represents the initial stage in both types of vascular complications; it represents "mandatory damage" in the development of microvascular complications and only "introductory damage" in the development of macrovascular complications. Increasing scientific evidence has revealed an important role of the Wnt pathway in the pathophysiology of the vascular wall. It is well known that the Wnt pathway is altered in patients with T2DM. This review aims to be an update of the current literature related to the Wnt pathway molecules that are altered in patients with T2DM, which may also be the cause of damage to the vasculature. Both microvascular complications (retinopathy, nephropathy, and neuropathy) and macrovascular complications (coronary artery disease, cerebrovascular disease, and peripheral arterial disease) are analyzed. This review aims to concisely concentrate all the evidence to facilitate the view on the vascular involvement of the Wnt pathway and its components by highlighting the importance of exploring possible therapeutic strategy for patients with T2DM who develop vascular pathologies.


Cardiovascular Diseases , Cardiovascular System , Diabetes Complications , Diabetes Mellitus, Type 2 , Peripheral Arterial Disease , Diabetes Complications/complications , Diabetes Mellitus, Type 2/complications , Humans , Peripheral Arterial Disease/complications , Wnt Signaling Pathway
13.
Nutrients ; 14(14)2022 Jul 21.
Article En | MEDLINE | ID: mdl-35889946

Lifestyle changes are causing an exponential increase in the prevalence of obesity and metabolic syndrome (MetS) worldwide. The most frequent complications of these are the development of diabetes (T2D) and cardiovascular disease (CVD). Accurate tools are needed to classify the cardiovascular risk (CVR) in the MetS population. In recent years, numerous biomarkers of bone metabolism have been associated with CVR. The aim of this study was to determine the levels of undercarboxylated osteocalcin (ucOC) in a cohort of patients with MetS and to analyse its association with MetS parameters and CVR as well as with T2D prevalence. A longitudinal study was conducted in which a MetS population was followed for one year. Weight change, adherence to the Mediterranean diet (MedDiet), ucOC levels, MetS parameters and CVR were analysed and CVR was calculated using different scores. Our results showed a decrease of CVR associated with a better adherence to the MetDiet resulting in higher HDL-C and ucOC levels though the improvement of MetS risk factors. This bone protein appeared as a potential biomarker to classify CVR in the MetS population, especially for MetS patients without prevalent T2D. Furthermore, ucOC serum levels could be good predictors of T2D prevalence.


Diabetes Mellitus, Type 2 , Metabolic Syndrome , Biomarkers , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Early Diagnosis , Humans , Longitudinal Studies , Osteocalcin , Pilot Projects , Risk Factors
14.
Front Endocrinol (Lausanne) ; 13: 863940, 2022.
Article En | MEDLINE | ID: mdl-35498405

Hypophosphatasia (HPP) a rare disease caused by mutations in the ALPL gene encoding for the tissue-nonspecific alkaline phosphatase protein (TNSALP), has been identified as a potentially under-diagnosed condition worldwide which may have higher prevalence than currently established. This is largely due to the overlapping of its symptomatology with that of other more frequent pathologies. Although HPP is usually associated with deficient bone mineralization, the high genetic variability of ALPL results in high clinical heterogeneity, which makes it difficult to establish a specific HPP symptomatology. In the present study, three variants of ALPL gene with uncertain significance and no previously described (p.Del Glu23_Lys24, p.Pro292Leu and p.His379Asn) were identified in heterozygosis in patients diagnosed with HPP. These variants were characterized at phenotypic, functional and structural levels. All genetic variants showed significantly lower in vitro ALP activity than the wild-type (WT) genotype (p-value <0.001). Structurally, p.His379Asn variant resulted in the loss of two Zn2+ binding sites in the protein dimer which may greatly affect ALP activity. In summary, we identified three novel ALPL gene mutations associated with adult HPP. The correct identification and characterization of new variants and the subsequent study of their phenotype will allow the establishment of genotype-phenotype relationships that facilitate the management of the disease as well as making it possible to individualize treatment for each specific patient. This would allow the therapeutic approach to HPP to be personalized according to the unique genetic characteristics and clinical manifestations of each patient.


Hypophosphatasia , Alkaline Phosphatase/genetics , Genotype , Heterozygote , Humans , Hypophosphatasia/genetics , Phenotype
15.
J Clin Med ; 11(8)2022 Apr 14.
Article En | MEDLINE | ID: mdl-35456299

Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.

16.
Biomedicines ; 10(2)2022 Feb 06.
Article En | MEDLINE | ID: mdl-35203598

The identification of common targets in Alzheimer's disease (AD) and cardiovascular disease (CVD) in recent years makes the study of the CVD/AD axis a research topic of great interest. Besides aging, other links between CVD and AD have been described, suggesting the existence of common molecular mechanisms. Our study aimed to identify common targets in the CVD/AD axis. For this purpose, genomic data from calcified and healthy femoral artery samples were used to identify differentially expressed genes (DEGs), which were used to generate a protein-protein interaction network, where a module related to AD was identified. This module was enriched with the functionally closest proteins and analyzed using different centrality algorithms to determine the main targets in the CVD/AD axis. Validation was performed by proteomic and data mining analyses. The proteins identified with an important role in both pathologies were apolipoprotein E and haptoglobin as DEGs, with a fold change about +2 and -2, in calcified femoral artery vs healthy artery, respectively, and clusterin and alpha-2-macroglobulin as close interactors that matched in our proteomic analysis. However, further studies are needed to elucidate the specific role of these proteins, and to evaluate its function as biomarkers or therapeutic targets.

17.
Front Endocrinol (Lausanne) ; 13: 1069224, 2022.
Article En | MEDLINE | ID: mdl-36699041

Aim: Patients with type 2 diabetes (T2DM) have more risk of bone fractures. However, areal bone mineral density (aBMD) by conventional dual-energy x-ray absorptiometry (DXA) is not useful for identifying this risk. This study aims to evaluate 3D-DXA parameters determining the cortical and trabecular compartments in patients with T2DM compared to non-diabetic subjects and to identify their determinants. Materials and methods: Case-control study in 111 T2DM patients (65.4 ± 7.6 years old) and 134 non-diabetic controls (64.7 ± 8.6-year-old). DXA, 3D-DXA modelling via 3D-Shaper software and trabecular bone score (TBS) were used to obtain aBMD, cortical and trabecular parameters, and lumbar spine microarchitecture, respectively. In addition, biochemical markers as 25-hydroxyvitamin d, type I procollagen N-terminal propeptide (P1NP), C-terminal telopeptide of type I collagen (CTX), and glycated haemoglobin (HbA1c) were analysed. Results: Mean-adjusted values showed higher aBMD (5.4%-7.7%, ES: 0.33-0.53) and 3D-DXA parameters (4.1%-10.3%, ES: 0.42-0.68) in the T2DM group compared with the control group. However, TBS was lower in the T2DM group compared to the control group (-14.7%, ES: 1.18). In addition, sex (ß = 0.272 to 0.316) and body mass index (BMI) (ß = 0.236 to 0.455) were the most consistent and positive predictors of aBMD (p ≤ 0.01). BMI and P1NP were negative predictors of TBS (ß = -0.530 and -0.254, respectively, p ≤ 0.01), while CTX was a positive one (ß = 0.226, p=0.02). Finally, BMI was consistently the strongest positive predictor of 3D-DXA parameters (ß = 0.240 to 0.442, p<0.05). Conclusion: Patients with T2DM present higher bone mass measured both by conventional DXA and 3D-DXA, suggesting that 3D-DXA technology is not capable of identifying alterations in bone structure in this population. Moreover, BMI was the most consistent determinant in all bone outcomes.


Diabetes Mellitus, Type 2 , Pelvic Bones , Humans , Middle Aged , Aged , Absorptiometry, Photon , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Case-Control Studies , Lumbar Vertebrae/diagnostic imaging
18.
Nutrients ; 13(10)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34684492

Recent evidence has revealed anti-inflammatory properties of vitamin D as well as extra-skeletal activity. In this context, vitamin D seems to be involved in infections, autoimmune diseases, cardiometabolic diseases, and cancer development. In recent years, the relationship between vitamin D and insulin resistance has been a topic of growing interest. Low 25-hydroxyvitamin D (25(OH)D) levels appear to be associated with most of the insulin resistance disorders described to date. In fact, vitamin D deficiency may be one of the factors accelerating the development of insulin resistance. Vitamin D deficiency is a common problem in the population and may be associated with the pathogenesis of diseases related to insulin resistance, such as obesity, diabetes, metabolic syndrome (MS) and polycystic ovary syndrome (PCOS). An important question is the identification of 25(OH)D levels capable of generating an effect on insulin resistance, glucose metabolism and to decrease the risk of developing insulin resistance related disorders. The benefits of 25(OH)D supplementation/repletion on bone health are well known, and although there is a biological plausibility linking the status of vitamin D and insulin resistance supported by basic and clinical research findings, well-designed randomized clinical trials as well as basic research are necessary to know the molecular pathways involved in this association.


Insulin Resistance/physiology , Nutritional Status/physiology , Vitamin D Deficiency/blood , Vitamin D/analogs & derivatives , Vitamin D/pharmacology , Female , Humans , Male , Vitamin D/blood
19.
Diabetes Metab ; 47(6): 101276, 2021 Nov.
Article En | MEDLINE | ID: mdl-34517124

AIMS: To examine the clinical and biochemical determinants of trabecular bone score (TBS) in type 2 diabetes mellitus (T2DM) patients. METHODS: Cross-sectional observational study in 137 T2DM patients (49-85 years). Whole-body fat percentage was estimated using the relative fat mass (RFM) equation. Bone mineral density (BMD) and TBS were assessed using dual-energy X-ray absorptiometry and TBS iNsight Software respectively. RESULTS: T2DM patients showed significantly lower TBS values (P < 0.001) despite significantly higher lumbar spine BMD (LS-BMD) (P = 0.025) compared to controls. TBS values ​​were negatively correlated with body mass index (BMI) (P < 0.001), waist circumference (P < 0.001), and HOMA-2IR index (P = 0.004) and positively correlated with sex hormone-binding globulin (SHBG) (P = 0.01) and LS-BMD (P = 0.003). RFM was negatively associated with TBS in both males (P < 0.001) and females (P = 0.005). The multivariate analysis showed that RFM, HOMA2-IR (negative), SHBG, and LS-BMD (positive) were the variables independently associated with TBS. ROC analysis revealed RFM as the variable with the highest predictive value for risk of degraded bone microarchitecture. CONCLUSIONS: The adiposity estimated by RFM may negatively affect TBS and this relationship may be influenced by insulin resistance and SHBG. RFM could act as a key estimator of degraded bone microarchitecture risk in the T2DM population.


Diabetes Mellitus, Type 2 , Hyperglycemia , Insulin Resistance , Absorptiometry, Photon , Bone Density , Cancellous Bone/diagnostic imaging , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Female , Humans , Hyperglycemia/complications , Male
20.
J Clin Med ; 10(10)2021 May 20.
Article En | MEDLINE | ID: mdl-34065223

Osteoglycin (OGN) could be a biomarker of mild kidney function impairment in type 2 diabetes (T2D). Our study aimed to determine the association between serum OGN and impaired kidney function risk in T2D patients and to analyze its potential role as an estimator of kidney disturbances in this population. This cross-sectional study included 147 T2D patients (65 ± 8 years, 58.5% males), and 75 healthy controls (63 ± 10 years, 36% males). Circulating OGN levels were determined by ELISA. Linear regression modeling was performed to determine the variables influencing circulating OGN, and an ROC curve was plotted to assess the usefulness of OGN as an estimator of diabetic kidney disease risk. Circulating OGN was significantly increased in T2D patients compared to controls (18.41 (14.45-23.27) ng/mL vs. 8.74 (7.03-12.35) ng/mL; p < 0.001). We found a progressive increase in serum OGN according to the severity of kidney impairment in T2D patients (normal kidney function: 16.14 (12.13-20.48) ng/mL; mildly impaired kidney function: 19.15 (15.78-25.90) ng/mL; moderate impaired kidney function: 21.80 (15.06-29.22) ng/mL; p = 0.006). Circulating OGN was an independent estimator of mildly impaired kidney function risk in T2D patients. We suggest that serum OGN could act as an albuminuria-independent biomarker of incipient kidney dysfunction in T2D patients.

...