Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Sci Adv ; 9(5): eade9585, 2023 02 03.
Article En | MEDLINE | ID: mdl-36724221

Enhancing the intracellular labile iron pool (LIP) represents a powerful, yet untapped strategy for driving ferroptotic death of cancer cells. Here, we show that NRF2 maintains iron homeostasis by controlling HERC2 (E3 ubiquitin ligase for NCOA4 and FBXL5) and VAMP8 (mediates autophagosome-lysosome fusion). NFE2L2/NRF2 knockout cells have low HERC2 expression, leading to a simultaneous increase in ferritin and NCOA4 and recruitment of apoferritin into the autophagosome. NFE2L2/NRF2 knockout cells also have low VAMP8 expression, which leads to ferritinophagy blockage. Therefore, deletion of NFE2L2/NRF2 results in apoferritin accumulation in the autophagosome, an elevated LIP, and enhanced sensitivity to ferroptosis. Concordantly, NRF2 levels correlate with HERC2 and VAMP8 in human ovarian cancer tissues, as well as ferroptosis resistance in a panel of ovarian cancer cell lines. Last, the feasibility of inhibiting NRF2 to increase the LIP and kill cancer cells via ferroptosis was demonstrated in preclinical models, signifying the impact of NRF2 inhibition in cancer treatment.


Ferroptosis , Ovarian Neoplasms , Humans , Female , Ferroptosis/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Apoferritins , Iron/metabolism , Homeostasis , Ubiquitin-Protein Ligases/metabolism , R-SNARE Proteins/metabolism
2.
Redox Biol ; 59: 102570, 2023 02.
Article En | MEDLINE | ID: mdl-36495698

BACKGROUND AND AIMS: Caloric excess and sedentary lifestyles have led to an epidemic of obesity, metabolic syndrome, and non-alcoholic fatty liver disease (NAFLD). The objective of this study was to investigate the mechanisms underlying high fat diet (HFD)-induced NAFLD, and to explore NRF2 activation as a strategy to alleviate NAFLD. APPROACH AND RESULTS: Herein, we demonstrated that high fat diet (HFD) induced lipid peroxidation and ferroptosis, both of which could be alleviated by NRF2 upregulation. Mechanistically, HFD suppressed autophagosome biogenesis through AMPK- and AKT-mediated mTOR activation and decreased ATG7, resulting in KEAP1 stabilization and decreased NRF2 levels in mouse liver. Furthermore, ATG7 is required for HFD-induced NRF2 downregulation, as ATG7 deletion in Cre-inducible ATG7 knockout mice decreased NRF2 levels and enhanced ferroptosis, which was not further exacerbated by HFD. This finding was recapitulated in mouse hepatocytes, which showed a similar phenotype upon treatment with saturated fatty acids (SFAs) but not monounsaturated fatty acids (MUFAs). Finally, NRF2 activation blocked fatty acid (FA)-mediated NRF2 downregulation, lipid peroxidation, and ferroptosis. Importantly, the HFD-induced alterations were also observed in human fatty liver tissue samples. CONCLUSIONS: HFD-mediated autophagy inhibition, NRF2 suppression, and ferroptosis promotion are important molecular mechanisms of obesity-driven metabolic diseases. NRF2 activation counteracts HFD-mediated NRF2 suppression and ferroptotic cell death. In addition, SFA vs. MUFA regulation of NRF2 may underlie their harmful vs. beneficial effects. Our study reveals NRF2 as a key player in the development and progression of fatty liver disease and that NRF2 activation could serve as a potential therapeutic strategy.


Non-alcoholic Fatty Liver Disease , Animals , Mice , Humans , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/drug therapy , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Autophagosomes/metabolism , Fatty Acids/metabolism , Obesity/metabolism , Cell Death , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Lipid Metabolism
3.
Transl Res ; 239: 44-57, 2022 01.
Article En | MEDLINE | ID: mdl-34139379

Therapeutic strategies to prevent or reduce the severity of radiation pneumonitis are a serious unmet need. We evaluated extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a damage-associated molecular pattern protein (DAMP) and Toll-Like Receptor 4 (TLR4) ligand, as a therapeutic target in murine radiation pneumonitis. Radiation-induced murine and human NAMPT expression was assessed in vitro, in tissues (IHC, biochemistry, imaging), and in plasma. Wild type C57Bl6 mice (WT) and Nampt+/- heterozygous mice were exposed to 20Gy whole thoracic lung irradiation (WTLI) with or without weekly IP injection of IgG1 (control) or an eNAMPT-neutralizing polyclonal (pAb) or monoclonal antibody (mAb). BAL protein/cells and H&E staining were used to generate a WTLI severity score. Differentially-expressed genes (DEGs)/pathways were identified by RNA sequencing and bioinformatic analyses. Radiation exposure increases in vitro NAMPT expression in lung epithelium (NAMPT promoter activity) and NAMPT lung tissue expression in WTLI-exposed mice. Nampt+/- mice and eNAMPT pAb/mAb-treated mice exhibited significant histologic attenuation of WTLI-mediated lung injury with reduced levels of BAL protein and cells, and plasma levels of eNAMPT, IL-6,  and IL-1ß. Genomic and biochemical studies from WTLI-exposed lung tissues highlighted dysregulation of NFkB/cytokine and MAP kinase signaling pathways which were rectified by eNAMPT mAb treatment. The eNAMPT/TLR4 pathway is essentially involved in radiation pathobiology with eNAMPT neutralization an effective therapeutic strategy to reduce the severity of radiation pneumonitis.


Antibodies, Neutralizing/pharmacology , Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Radiation Pneumonitis/metabolism , Toll-Like Receptor 4/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Cytokines/blood , Cytokines/genetics , Cytokines/immunology , Humans , Lung/metabolism , Lung/pathology , Lung/radiation effects , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/radiation effects , Male , Mice, Inbred C57BL , Mice, Mutant Strains , NF-kappa B/metabolism , Nicotinamide Phosphoribosyltransferase/blood , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/immunology , Radiation Pneumonitis/drug therapy , Signal Transduction/drug effects
4.
Redox Biol ; 38: 101766, 2021 01.
Article En | MEDLINE | ID: mdl-33126057

Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible disease characterized by an increase in differentiation of fibroblasts to myofibroblasts and excessive accumulation of extracellular matrix in lung tissue. Pharmacological activation of NRF2 has proved to be a valuable antifibrotic approach, however the detailed mechanisms of how NRF2 mediates antifibrotic function remain unclear. In this study, we found that the antifibrotic function of sulforaphane (SFN), an NRF2 activator, was largely dependent on LOC344887, a long noncoding RNA. Two functional AREs were identified in both the promoter and intron 1 of LOC344887, which defines LOC344887 as a novel anti-fibrotic NRF2 target gene. RNA-seq analysis revealed that LOC344887 controls genes and signaling pathways associated with fibrogenesis. Deletion or downregulation of LOC344887 enhanced expression of CDH2/N-cadherin, as well as a number of other fibrotic genes and blunted the antifibrotic effects of SFN. Furthermore, LOC344887-mediated downregulation of fibrotic genes may involve the PI3K-AKT signaling pathway, as pharmacologic inhibition of PI3K activity blocked the effects of LOC344887 knockdown. Our findings demonstrate that NRF2-mediated LOC344887 upregulation contributes to the antifibrotic potential of SFN by repressing the expression of CDH2 and other fibrotic genes, providing novel insight into how NRF2 controls the regulatory networks of IPF. This study provides a better understanding of the molecular mechanisms of NRF2 activators against pulmonary fibrosis and presents a novel therapeutic axis for prevention and intervention of fibrosis-related diseases.


Lung/pathology , NF-E2-Related Factor 2 , Phosphatidylinositol 3-Kinases , RNA, Long Noncoding , Signal Transduction , Fibrosis , Humans , Isothiocyanates/pharmacology , Lung/metabolism , Myofibroblasts/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism
5.
J Clin Invest ; 130(3): 1301-1314, 2020 03 02.
Article En | MEDLINE | ID: mdl-31714898

Influenza A virus (IAV) is among the most common causes of pneumonia-related death worldwide. Pulmonary epithelial cells are the primary target for viral infection and replication and respond by releasing inflammatory mediators that recruit immune cells to mount the host response. Severe lung injury and death during IAV infection result from an exuberant host inflammatory response. The linear ubiquitin assembly complex (LUBAC), composed of SHARPIN, HOIL-1L, and HOIP, is a critical regulator of NF-κB-dependent inflammation. Using mice with lung epithelial-specific deletions of HOIL-1L or HOIP in a model of IAV infection, we provided evidence that, while a reduction in the inflammatory response was beneficial, ablation of the LUBAC-dependent lung epithelial-driven response worsened lung injury and increased mortality. Moreover, we described a mechanism for the upregulation of HOIL-1L in infected and noninfected cells triggered by the activation of type I IFN receptor and mediated by IRF1, which was maladaptive and contributed to hyperinflammation. Thus, we propose that lung epithelial LUBAC acts as a molecular rheostat that could be selectively targeted to modulate the immune response in patients with severe IAV-induced pneumonia.


Influenza A Virus, H1N1 Subtype/immunology , Lung/immunology , Multiprotein Complexes/immunology , Orthomyxoviridae Infections/immunology , Pneumonia, Viral/immunology , Respiratory Mucosa/immunology , A549 Cells , Animals , Dogs , Humans , Influenza A Virus, H1N1 Subtype/genetics , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/immunology , Lung/pathology , Lung/virology , Madin Darby Canine Kidney Cells , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/pathology , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Ubiquitin-Protein Ligases/deficiency , Ubiquitin-Protein Ligases/immunology
6.
Curr Pharmacogenomics Person Med ; 10(4): 314-321, 2012 Dec.
Article En | MEDLINE | ID: mdl-23185213

Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.

7.
J Angiogenes Res ; 2(1): 5, 2010 Feb 19.
Article En | MEDLINE | ID: mdl-20298531

BACKGROUND: Recent cancer therapies include drugs that target both tumor growth and angiogenesis including mammalian target of rapamycin (mTOR) inhibitors. Since mTOR inhibitor therapy is associated with significant side effects, we examined potential agents that can reduce the therapeutic dose. METHODS: Methylnaltrexone (MNTX), a peripheral mu opioid receptor (MOR) antagonist, in combination with the mTOR inhibitors temsirolimus and/or rapamycin, was evaluated for inhibition of VEGF-induced human pulmonary microvascular endothelial cell (EC) proliferation and migration as well as in vivo angiogenesis (mouse Matrigel plug assay). RESULTS: MNTX inhibited VEGF-induced EC proliferation and migration with an IC50 of approximately 100 nM. Adding 10 nM MNTX to EC shifted the IC50 of temsirolimus inhibition of VEGF-induced proliferation and migration from approximately 10 nM to approximately 1 nM and from approximately 50 to approximately 10 nM respectively. We observed similar effects with rapamycin. On a mechanistic level, we observed that MNTX increased EC plasma membrane-associated tyrosine phosphate activity. Inhibition of tyrosine phosphatase activity (3,4-dephostatin) blocked the synergy between MNTX and temsirolimus and increased VEGF-induced tyrosine phosphorylation of Src with enhanced PI3 kinase and mTOR Complex 2-dependent phosphorylation of Akt and subsequent activation of mTOR Complex 1 (rapamycin and temsirolimus target), while silencing Src, Akt or mTOR complex 2 components blocked VEGF-induced angiogenic events. CONCLUSIONS: Our data indicate that MNTX exerts a synergistic effect with rapamycin and temsirolimus on inhibition of VEGF-induced human EC proliferation and migration and in vivo angiogenesis. Therefore, addition of MNTX could potentially lower the dose of mTOR inhibitors which could improve therapeutic index.

...