Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Nat Immunol ; 25(2): 357-370, 2024 Feb.
Article En | MEDLINE | ID: mdl-38177281

Cerebral ischemia triggers a powerful inflammatory reaction involving peripheral leukocytes and brain resident cells that contribute to both tissue injury and repair. However, their dynamics and diversity remain poorly understood. To address these limitations, we performed a single-cell transcriptomic study of brain and blood cells 2 or 14 days after ischemic stroke in mice. We observed a strong divergence of post-ischemic microglia, monocyte-derived macrophages and neutrophils over time, while endothelial cells and brain-associated macrophages showed altered transcriptomic signatures at 2 days poststroke. Trajectory inference predicted the in situ trans-differentiation of macrophages from blood monocytes into day 2 and day 14 phenotypes, while neutrophils were projected to be continuously de novo recruited from the blood. Brain single-cell transcriptomes from both female and male aged mice were similar to that of young male mice, but aged and young brains differed in their immune cell composition. Although blood leukocyte analysis also revealed altered transcriptomes after stroke, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification occurs within the brain in the early and recovery phases of ischemic stroke. A portal ( https://anratherlab.shinyapps.io/strokevis/ ) is provided to allow user-friendly access to our data.


Ischemic Stroke , Stroke , Female , Male , Mice , Animals , Endothelial Cells , Stroke/genetics , Brain , Monocytes , Microglia , Gene Expression Profiling , Disease Models, Animal , Mice, Inbred C57BL
3.
Semin Immunopathol ; 45(3): 437-449, 2023 05.
Article En | MEDLINE | ID: mdl-37138042

Recent evidence implicates cranial border immune compartments in the meninges, choroid plexus, circumventricular organs, and skull bone marrow in several neuroinflammatory and neoplastic diseases. Their pathogenic importance has also been described for cardiovascular diseases such as hypertension and stroke. In this review, we will examine the cellular composition of these cranial border immune niches, the potential pathways through which they might interact, and the evidence linking them to cardiovascular disease.


Brain , Meninges , Humans
4.
bioRxiv ; 2023 Apr 03.
Article En | MEDLINE | ID: mdl-37066298

Cerebral ischemia triggers a powerful inflammatory reaction involving both peripheral leukocytes and brain resident cells. Recent evidence indicates that their differentiation into a variety of functional phenotypes contributes to both tissue injury and repair. However, the temporal dynamics and diversity of post-stroke immune cell subsets remain poorly understood. To address these limitations, we performed a longitudinal single-cell transcriptomic study of both brain and mouse blood to obtain a composite picture of brain-infiltrating leukocytes, circulating leukocytes, microglia and endothelium diversity over the ischemic/reperfusion time. Brain cells and blood leukocytes isolated from mice 2 or 14 days after transient middle cerebral artery occlusion or sham surgery were purified by FACS sorting and processed for droplet-based single-cell transcriptomics. The analysis revealed a strong divergence of post-ischemic microglia, macrophages, and neutrophils over time, while such diversity was less evident in dendritic cells, B, T and NK cells. Conversely, brain endothelial cells and brain associated-macrophages showed altered transcriptomic signatures at 2 days post-stroke, but low divergence from sham at day 14. Pseudotime trajectory inference predicted the in-situ longitudinal progression of monocyte-derived macrophages from their blood precursors into day 2 and day 14 phenotypes, while microglia phenotypes at these two time points were not connected. In contrast to monocyte-derived macrophages, neutrophils were predicted to be continuously de-novo recruited from the blood. Brain single-cell transcriptomics from both female and male aged mice did not show major changes in respect to young mice, but aged and young brains differed in their immune cell composition. Furthermore, blood leukocyte analysis also revealed altered transcriptomes after stroke. However, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification into cellular subsets occurs within the brain in the early and the recovery phase of ischemic stroke. In addition, this resource report contains a searchable database https://anratherlab.shinyapps.io/strokevis/ to allow user-friendly access to our data. The StrokeVis tool constitutes a comprehensive gene expression atlas that can be interrogated at the gene and cell type level to explore the transcriptional changes of endothelial and immune cell subsets from mouse brain and blood after stroke.

5.
Brain Commun ; 5(2): fcad090, 2023.
Article En | MEDLINE | ID: mdl-37056478

Multiple consensus statements have called for preclinical randomized controlled trials to improve translation in stroke research. We investigated the efficacy of an interleukin-17A neutralizing antibody in a multi-centre preclinical randomized controlled trial using a murine ischaemia reperfusion stroke model. Twelve-week-old male C57BL/6 mice were subjected to 45 min of transient middle cerebral artery occlusion in four centres. Mice were randomly assigned (1:1) to receive either an anti-interleukin-17A (500 µg) or isotype antibody (500 µg) intravenously 1 h after reperfusion. The primary endpoint was infarct volume measured by magnetic resonance imaging three days after transient middle cerebral artery occlusion. Secondary analysis included mortality, neurological score, neutrophil infiltration and the impact of the gut microbiome on treatment effects. Out of 136 mice, 109 mice were included in the analysis of the primary endpoint. Mixed model analysis revealed that interleukin-17A neutralization significantly reduced infarct sizes (anti-interleukin-17A: 61.77 ± 31.04 mm3; IgG control: 75.66 ± 34.79 mm3; P = 0.01). Secondary outcome measures showed a decrease in mortality (hazard ratio = 3.43, 95% confidence interval = 1.157-10.18; P = 0.04) and neutrophil invasion into ischaemic cortices (anti-interleukin-17A: 7222 ± 6108 cells; IgG control: 28 153 ± 23 206 cells; P < 0.01). There was no difference in Bederson score. The analysis of the gut microbiome showed significant heterogeneity between centres (R = 0.78, P < 0.001, n = 40). Taken together, neutralization of interleukin-17A in a therapeutic time window resulted in a significant reduction of infarct sizes and mortality compared with isotype control. It suggests interleukin-17A neutralization as a potential therapeutic target in stroke.

6.
Brain Behav Immun ; 95: 489-501, 2021 07.
Article En | MEDLINE | ID: mdl-33872708

Cerebral ischemia is associated with an acute inflammatory response that contributes to the resulting injury. The innate immunity receptor CD36, expressed in microglia and endothelium, and the pro-inflammatory cytokine interleukin-1ß (IL-1ß) are involved in the mechanisms of ischemic injury. Since CD36 has been implicated in activation of the inflammasome, the main source of IL-1ß, we investigated whether CD36 mediates brain injury through the inflammasome and IL-1ß. We found that active caspase-1, a key inflammasome component, is decreased in microglia of CD36-deficient mice subjected to transient middle cerebral artery occlusion, an effect associated with a reduction in brain IL-1ß. Conditional deletion of CD36 either in microglia or endothelium reduced ischemic injury in mice, attesting to the pathogenic involvement of CD36 in both cell types. Application of an ischemic brain extract to primary brain endothelial cell cultures from wild type (WT) mice induced IL-1ß-dependent endothelial activation, reflected by increases in the cytokine colony stimulating factor-3, a response markedly attenuated in CD36-deficient endothelia. Similarly, the increase in colony stimulating factor-3 induced by recombinant IL-1ß was attenuated in CD36-deficient compared to WT endothelia. We conclude that microglial CD36 is a key determinant of post-ischemic IL-1ß production by regulating caspase-1 activity, whereas endothelial CD36 is required for the full expression of the endothelial activation induced by IL-1ß. The data identify microglial and endothelial CD36 as critical upstream components of the acute inflammatory response to cerebral ischemia and viable putative therapeutic targets.


CD36 Antigens/metabolism , Inflammasomes , Microglia , Animals , Caspase 1 , Endothelium , Interleukin-1beta , Mice , Mice, Inbred C57BL
7.
Circ Res ; 128(3): 363-382, 2021 02 05.
Article En | MEDLINE | ID: mdl-33301355

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Blood-Brain Barrier/metabolism , Cerebral Arteries/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Stroke/metabolism , Lysophospholipids/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine/analogs & derivatives , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/pathology , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Disease Models, Animal , Endothelial Cells/pathology , Female , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/physiopathology , Ischemic Attack, Transient/prevention & control , Ischemic Stroke/pathology , Ischemic Stroke/physiopathology , Ischemic Stroke/prevention & control , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Neuroprotective Agents/pharmacology , Signal Transduction , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/agonists , Sphingosine-1-Phosphate Receptors/genetics , Vascular Patency
8.
Hypertension ; 76(3): 795-807, 2020 09.
Article En | MEDLINE | ID: mdl-32654560

Hypertension is a leading cause of stroke and dementia, effects attributed to disrupting delivery of blood flow to the brain. Hypertension also alters the blood-brain barrier (BBB), a critical component of brain health. Although endothelial cells are ultimately responsible for the BBB, the development and maintenance of the barrier properties depend on the interaction with other vascular-associated cells. However, it remains unclear if BBB disruption in hypertension requires cooperative interaction with other cells. Perivascular macrophages (PVM), innate immune cells closely associated with cerebral microvessels, have emerged as major contributors to neurovascular dysfunction. Using 2-photon microscopy in vivo and electron microscopy in a mouse model of Ang II (angiotensin II) hypertension, we found that the vascular segments most susceptible to increased BBB permeability are arterioles and venules >10 µm and not capillaries. Brain macrophage depletion with clodronate attenuates, but does not abolish, the increased BBB permeability in these arterioles where PVM are located. Deletion of AT1R (Ang II type-1 receptors) in PVM using bone marrow chimeras partially attenuated the BBB dysfunction through the free radical-producing enzyme Nox2. In contrast, downregulation of AT1R in cerebral endothelial cells using a viral gene transfer-based approach prevented the BBB disruption completely. The results indicate that while endothelial AT1R, mainly in arterioles and venules, initiate the BBB disruption in hypertension, PVM are required for the full expression of the dysfunction. The findings unveil a previously unappreciated contribution of resident brain macrophages to increased BBB permeability of hypertension and identify PVM as a putative therapeutic target in diseases associated with BBB dysfunction.


Arterioles/physiopathology , Blood-Brain Barrier , Brain/blood supply , Cerebrovascular Circulation/physiology , Endothelium, Vascular , Hypertension , Macrophages/physiology , Receptor, Angiotensin, Type 1/metabolism , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/physiopathology , Capillary Permeability/physiology , Cognitive Dysfunction/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Glymphatic System/immunology , Glymphatic System/pathology , Hypertension/metabolism , Hypertension/physiopathology , Mice
9.
J Neurosci ; 38(30): 6722-6736, 2018 07 25.
Article En | MEDLINE | ID: mdl-29946039

Exposure to low-dose lipopolysaccharide (LPS) before cerebral ischemia is neuroprotective in stroke models, a phenomenon termed preconditioning (PC). Although it is well established that LPS-PC induces central and peripheral immune responses, the cellular mechanisms modulating ischemic injury remain unclear. Here, we investigated the role of immune cells in the brain protection afforded by PC and tested whether monocytes may be reprogrammed by ex vivo LPS exposure, thus modulating inflammatory injury after cerebral ischemia in male mice. We found that systemic injection of low-dose LPS induces a Ly6Chi monocyte response that protects the brain after transient middle cerebral artery occlusion (MCAO) in mice. Remarkably, adoptive transfer of monocytes isolated from preconditioned mice into naive mice 7 h after transient MCAO reduced brain injury. Gene expression and functional studies showed that IL-10, inducible nitric oxide synthase, and CCR2 in monocytes are essential for neuroprotection. This protective activity was elicited even if mouse or human monocytes were exposed ex vivo to LPS and then injected into male mice after stroke. Cell-tracking studies showed that protective monocytes are mobilized from the spleen and reach the brain and meninges, where they suppress postischemic inflammation and neutrophil influx into the brain parenchyma. Our findings unveil a previously unrecognized subpopulation of splenic monocytes capable of protecting the brain with an extended therapeutic window and provide the rationale for cell therapies based on the delivery of autologous or allogeneic protective monocytes in patients after ischemic stroke.SIGNIFICANCE STATEMENT Inflammation is a key component of the pathophysiology of the brain in stroke, a leading cause of death and disability with limited therapeutic options. Here, we investigate endogenous mechanisms of protection against cerebral ischemia. Using lipopolysaccharide (LPS) preconditioning (PC) as an approach to induce ischemic tolerance in mice, we found generation of neuroprotective monocytes within the spleen, from which they traffic to the brain and meninges, suppressing postischemic inflammation. Importantly, systemic LPS-PC can be mimicked by adoptive transfer of in vitro-preconditioned mouse or human monocytes at translational relevant time points after stroke. This model of neuroprotection may facilitate clinical efforts to increase the efficacy of BM mononuclear cell treatments in acute neurological diseases such as cerebral ischemia.


Ischemic Preconditioning/methods , Lipopolysaccharides/pharmacology , Monocytes , Neuroprotection/immunology , Stroke , Adoptive Transfer , Animals , Brain Ischemia/immunology , Brain Ischemia/pathology , Humans , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/immunology , Monocytes/transplantation , Stroke/immunology , Stroke/pathology
10.
Nat Neurosci ; 21(2): 240-249, 2018 02.
Article En | MEDLINE | ID: mdl-29335605

A diet rich in salt is linked to an increased risk of cerebrovascular diseases and dementia, but it remains unclear how dietary salt harms the brain. We report that, in mice, excess dietary salt suppresses resting cerebral blood flow and endothelial function, leading to cognitive impairment. The effect depends on expansion of TH17 cells in the small intestine, resulting in a marked increase in plasma interleukin-17 (IL-17). Circulating IL-17, in turn, promotes endothelial dysfunction and cognitive impairment by the Rho kinase-dependent inhibitory phosphorylation of endothelial nitric oxide synthase and reduced nitric oxide production in cerebral endothelial cells. The findings reveal a new gut-brain axis linking dietary habits to cognitive impairment through a gut-initiated adaptive immune response compromising brain function via circulating IL-17. Thus, the TH17 cell-IL-17 pathway is a putative target to counter the deleterious brain effects induced by dietary salt and other diseases associated with TH17 polarization.


Cerebrovascular Disorders/chemically induced , Cognition Disorders/chemically induced , Intestine, Small/pathology , Sodium Chloride, Dietary/toxicity , Th17 Cells/drug effects , Acetylcholine/pharmacology , Amides/pharmacology , Animals , Antihypertensive Agents/pharmacology , Cell Differentiation/drug effects , Cell Polarity/drug effects , Cerebrovascular Circulation/drug effects , Cerebrovascular Disorders/drug therapy , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interleukin-17/administration & dosage , Interleukin-17/blood , Interleukin-17/genetics , Interleukin-17/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurovascular Coupling/drug effects , Phosphorylation/drug effects , Pyridines/pharmacology
11.
Circ Res ; 121(3): 258-269, 2017 Jul 21.
Article En | MEDLINE | ID: mdl-28515043

RATIONALE: Increasing evidence indicates that alterations of the cerebral microcirculation may play a role in Alzheimer disease, the leading cause of late-life dementia. The amyloid-ß peptide (Aß), a key pathogenic factor in Alzheimer disease, induces profound alterations in neurovascular regulation through the innate immunity receptor CD36 (cluster of differentiation 36), which, in turn, activates a Nox2-containing NADPH oxidase, leading to cerebrovascular oxidative stress. Brain perivascular macrophages (PVM) located in the perivascular space, a major site of brain Aß collection and clearance, are juxtaposed to the wall of intracerebral resistance vessels and are a powerful source of reactive oxygen species. OBJECTIVE: We tested the hypothesis that PVM are the main source of reactive oxygen species responsible for the cerebrovascular actions of Aß and that CD36 and Nox2 in PVM are the molecular substrates of the effect. METHODS AND RESULTS: Selective depletion of PVM using intracerebroventricular injection of clodronate abrogates the reactive oxygen species production and cerebrovascular dysfunction induced by Aß applied directly to the cerebral cortex, administered intravascularly, or overproduced in the brain of transgenic mice expressing mutated forms of the amyloid precursor protein (Tg2576 mice). In addition, using bone marrow chimeras, we demonstrate that PVM are the cells expressing CD36 and Nox2 responsible for the dysfunction. Thus, deletion of CD36 or Nox2 from PVM abrogates the deleterious vascular effects of Aß, whereas wild-type PVM reconstitute the vascular dysfunction in CD36-null mice. CONCLUSIONS: The data identify PVM as a previously unrecognized effector of the damaging neurovascular actions of Aß and unveil a new mechanism by which brain-resident innate immune cells and their receptors may contribute to the pathobiology of Alzheimer disease.


Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cerebrovascular Circulation/physiology , Macrophages/metabolism , Somatosensory Cortex/blood supply , Somatosensory Cortex/metabolism , Alzheimer Disease/pathology , Animals , Brain/blood supply , Brain/metabolism , Brain/pathology , Macrophages/pathology , Male , Mice , Mice, Transgenic , Random Allocation , Reactive Oxygen Species/metabolism
12.
J Clin Invest ; 126(12): 4674-4689, 2016 12 01.
Article En | MEDLINE | ID: mdl-27841763

Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.


Blood-Brain Barrier/metabolism , Cognitive Dysfunction/metabolism , Hypertension/metabolism , Macrophages/metabolism , Oxidative Stress , Angiotensin II/adverse effects , Angiotensin II/pharmacology , Animals , Blood-Brain Barrier/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Disease Models, Animal , Hypertension/complications , Hypertension/genetics , Hypertension/pathology , Macrophages/pathology , Male , Membrane Glycoproteins/metabolism , Mice , NADPH Oxidase 2 , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Receptor, Angiotensin, Type 1/metabolism
13.
J Neuroinflammation ; 13(1): 285, 2016 11 04.
Article En | MEDLINE | ID: mdl-27814740

BACKGROUND: A key feature of the inflammatory response after cerebral ischemia is the brain infiltration of blood monocytes. There are two main monocyte subsets in the mouse blood: CCR2+Ly6Chi "inflammatory" monocytes involved in acute inflammation, and CX3CR1+Ly6Clo "patrolling" monocytes, which may play a role in repair processes. We hypothesized that CCR2+Ly6Chi inflammatory monocytes are recruited in the early phase after ischemia and transdifferentiate into CX3CR1+Ly6Clo "repair" macrophages in the brain. METHODS: CX3CR1GFP/+CCR2RFP/+ bone marrow (BM) chimeric mice underwent transient middle cerebral artery occlusion (MCAo). Mice were sacrificed from 1 to 28 days later to phenotype and map subsets of infiltrating monocytes/macrophages (Mo/MΦ) in the brain over time. Flow cytometry analysis 3 and 14 days after MCAo in CCR2-/- mice, which exhibit deficient monocyte recruitment after inflammation, and NR4A1-/- BM chimeric mice, which lack circulating CX3CR1+Ly6Clo monocytes, was also performed. RESULTS: Brain mapping of CX3CR1GFP/+ and CCR2RFP/+ cells 3 days after MCAo showed absence of CX3CR1GFP/+ Mo/MΦ but accumulation of CCR2RFP/+ Mo/MΦ throughout the ischemic territory. On the other hand, CX3CR1+ cells accumulated 14 days after MCAo at the border of the infarct core where CCR2RFP/+ accrued. Whereas the amoeboid morphology of CCR2RFP/+ Mo/MΦ remained unchanged over time, CX3CR1GFP/+ cells exhibited three distinct phenotypes: amoeboid cells with retracted processes, ramified cells, and perivascular elongated cells. CX3CR1GFP/+ cells were positive for the Mo/MΦ marker Iba1 and phenotypically distinct from endothelial cells, smooth muscle cells, pericytes, neurons, astrocytes, or oligodendrocytes. Because accumulation of CX3CR1+Ly6Clo Mo/MΦ was absent in the brains of CCR2 deficient mice, which exhibit deficiency in CCR2+Ly6Chi Mo/MΦ recruitment, but not in NR4A1-/- chimeric mice, which lack of circulating CX3CR1+Ly6Clo monocytes, our data suggest a local transition of CCR2+Ly6Chi Mo/MΦ into CX3CR1+Ly6Clo Mo/MΦ phenotype. CONCLUSIONS: CX3CR1+Ly6Clo arise in the brain parenchyma from CCR2+Ly6Chi Mo/MΦ rather than being de novo recruited from the blood. These findings provide new insights into the trafficking and phenotypic diversity of monocyte subtypes in the post-ischemic brain.


Brain/pathology , Cell Movement/physiology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Monocytes/physiology , Animals , Calcium-Binding Proteins/metabolism , Cell Movement/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Expression Regulation/physiology , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Infarction, Middle Cerebral Artery/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism
14.
J Neurosci ; 35(44): 14783-93, 2015 Nov 04.
Article En | MEDLINE | ID: mdl-26538649

The scavenger receptor CD36 is a critical factor initiating ischemic brain injury, but the cell type(s) expressing CD36 and responsible for its harmful effects remain unknown. Using bone marrow (BM) chimeras subjected to transient middle cerebral artery occlusion, we found that CD36(-/-) mice transplanted with wild-type (WT) BM (WT→CD36(-/-)) have smaller infarcts (-67%), comparable with those of mice lacking CD36 both in brain and hematogenous cells (CD36(-/-) →CD36(-/-); - 72%). Conversely, WT mice receiving CD36(-/-) BM (CD36(-/-) →WT) have infarcts similar to WT→WT mice, suggesting that CD36 in the host brain (i.e., in microglia and endothelial cells), and not in hematogenous cells is involved in the damage. As anticipated, postischemic neutrophil infiltration in CD36(-/-) →CD36(-/-) mice was attenuated. Surprisingly, however, in WT→CD36(-/-) mice, in which infarcts were small, neutrophil infiltration was large and similar to that of CD36(-/-) →WT mice, in which infarcts were not reduced. Postischemic neutrophil free radical production was attenuated in WT→CD36(-/-) mice compared with CD36(-/-) →WT mice, whereas expression of the neutrophil activator colony-stimulating factor 3 (CSF3) was suppressed in CD36(-/-) cerebral endothelial cells, but not microglia. In CD36(-/-) cerebral endothelial cultures exposed to extracts from stroke brains, the upregulation of CSF3, but not neutrophil attractant chemokines, was suppressed. Intracerebroventricular administration of CSF3, 24 h after stroke, reconstituted neutrophil radical production and increased infarct volume in WT→CD36(-/-) mice. The findings identify endothelial cells as a key player in the deleterious effects of CD36 in stroke, and unveil a novel role of endothelial CD36 in enabling neutrophil neurotoxicity through CSF3. SIGNIFICANCE STATEMENT: Ischemic stroke is a leading cause of death and disability worldwide with limited therapeutic options. The inflammatory response initiated by cerebral ischemia-reperfusion contributes to ischemic brain injury and is a potential therapeutic target. Here we report that CD36, an innate immunity receptor involved in the initiation of postischemic inflammation, is a previously unrecognized regulator of neutrophil cytotoxicity. The effect is mediated by endothelial CD36 via upregulation of the neutrophil activator CSF3 in cerebral endothelial cells. Therefore, approaches to modulate cerebral endothelial CD36 signaling or to neutralize CSF3 may provide novel therapeutic opportunities to ameliorate postischemic inflammatory injury.


Brain Injuries/metabolism , Brain Ischemia/metabolism , CD36 Antigens/biosynthesis , Neutrophil Activation/physiology , Receptors, Colony-Stimulating Factor/biosynthesis , Animals , Brain Injuries/pathology , Brain Ischemia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques
15.
Exp Neurol ; 261: 633-7, 2014 Nov.
Article En | MEDLINE | ID: mdl-25157902

Activation of innate immunity by sterile inflammation has emerged as a key event in selected CNS diseases, with a defining impact on all stages of the pathological process. Due to its multiple functions and assembly with other pattern recognition receptors, the innate immunity receptor CD36 has been implicated in a wide variety of brain pathologies, ranging from acute brain injury to neurodegeneration. However, the role of CD36 is complex involving both tissue destruction, related mainly to oxidative stress and inflammation, and beneficial reparative effects due to the involvement of CD36 in tissue repair and reorganization. A recent paper of Meyer at al. provided novel evidence for a role of CD36 also in spinal cord trauma, a condition in which the effect of CD36 was found to be univocally deleterious. This commentary will provide a brief overview of the pathobiology of CD36 and its expanding role in diseases of the brain and spinal cord.


CD36 Antigens/metabolism , Central Nervous System Diseases/immunology , Central Nervous System Diseases/pathology , Immunity, Innate/physiology , Animals , Humans , Signal Transduction/immunology
16.
J Immunol ; 193(5): 2531-7, 2014 Sep 01.
Article En | MEDLINE | ID: mdl-25038255

NO produced by inducible NO synthase (iNOS) contributes to ischemic brain injury, but the cell types expressing iNOS and mediating tissue damage have not been elucidated. To examine the relative contribution of iNOS in resident brain cells and peripheral leukocytes infiltrating the ischemic brain, we used bone marrow (BM) chimeric mice in which the middle cerebral artery was occluded and infarct volume was determined 3 d later. iNOS(-/-) mice engrafted with iNOS(+/+) BM exhibited larger infarcts (44 ± 2 mm(3); n = 13; mean ± SE) compared with autologous transplanted iNOS(-/-) mice (24 ± 3 mm(3); n = 10; p < 0.01), implicating blood-borne leukocytes in the damage. Furthermore, iNOS(+/+) mice transplanted with iNOS(-/-) BM had large infarcts (39 ± 6 mm(3); n = 13), similar to those of autologous transplanted iNOS(+/+) mice (39 ± 4 mm(3); n = 14), indicating the resident brain cells also play a role. Flow cytometry and cell sorting revealed that iNOS is highly expressed in neutrophils and endothelium but not microglia. Surprisingly, postischemic iNOS expression was enhanced in the endothelium of iNOS(+/+) mice transplanted with iNOS(-/-) BM and in leukocytes of iNOS(-/-) mice with iNOS(+/+) BM, suggesting that endothelial iNOS suppresses iNOS expression in leukocytes and vice versa. To provide independent evidence that neutrophils mediate brain injury, neutrophils were isolated and transferred to mice 24 h after stroke. Consistent with the result in chimeric mice, transfer of iNOS(+/+), but not iNOS(-/-), neutrophils into iNOS(-/-) mice increased infarct volume. The findings establish that iNOS in both neutrophils and endothelium mediates tissue damage and identify these cell types as putative therapeutic targets for stroke injury.


Brain Infarction/immunology , Endothelium, Vascular/immunology , Neutrophils/immunology , Nitric Oxide Synthase Type II/immunology , Nitric Oxide/immunology , Stroke/immunology , Animals , Brain Infarction/genetics , Brain Infarction/pathology , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Enzymologic/immunology , Mice , Mice, Knockout , Neutrophils/pathology , Nitric Oxide/genetics , Nitric Oxide Synthase Type II/genetics , Stroke/genetics , Stroke/pathology , Time Factors
17.
PLoS One ; 9(6): e99169, 2014.
Article En | MEDLINE | ID: mdl-24922549

BACKGROUND: Infections related to stroke-induced immunodepression are an important complication causing a high rate of death in patients. Several experimental studies in mouse stroke models have described this process but it has never been tested in other species such as rats. METHODS: Our study focused on the appearance of secondary systemic and pulmonary infections in ischemic rats, comparing with sham and naive animals. For that purpose, male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) or to transient MCAO (tMCAO) inserting a nylon filament. Forty-eight hours after ischemia, blood and lung samples were evaluated. RESULTS: In eMCAO set, ischemic rats showed a significant decrease in blood-peripheral lymphocytes (naive = 58.8±18.1%, ischemic = 22.9±16.4%) together with an increase in polymorphonuclears (PMNs) (naive = 29.2±14.7%, ischemic = 71.7±19.5%), while no change in monocytes was observed. The increase in PMNs counts was positively correlated with worse neurological outcome 48 hours after eMCAO (r = 0.55, p = 0.043). However, sham animals showed similar changes in peripheral leukocytes as those seen in ischemic rats (lymphocytes: 40.1±19.7%; PMNs: 51.7±19.2%). Analysis of bacteriological lung growth showed clear differences between naive (0±0 CFU/mL; log10) and both sham (3.9±2.5 CFU/mL; log10) and ischemic (4.3±2.9 CFU/mL; log10) groups. Additionally, naive animals presented non-pathological lung histology, while both sham and ischemic showed congestion, edema or hemorrhage. Concordant results were found in the second set of animals submitted to a tMCAO. CONCLUSIONS: Inflammatory and infection changes in Wistar rats subjected to MCAO models may be attributed not only to the brain ischemic injury but to the surgical aggression and/or anaesthetic stress. Consequently, we suggest that stroke-induced immunodepression in ischemic experimental models should be interpreted with caution in further experimental and translational studies, at least in rat stroke models that entail cervicotomy and cranial trepanation.


Coinfection/etiology , Infarction, Middle Cerebral Artery/complications , Lymphocyte Subsets , Respiratory Tract Infections/etiology , Sepsis/etiology , Animals , Coinfection/immunology , Disease Models, Animal , Infarction, Middle Cerebral Artery/immunology , Male , Postoperative Complications/immunology , Rats , Rats, Wistar , Respiratory Tract Infections/immunology , Sepsis/immunology
18.
Front Neurosci ; 8: 44, 2014.
Article En | MEDLINE | ID: mdl-24624056

Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance). These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning) can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance (IT) in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral IT acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish IT and that IT can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of IT and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies.

19.
J Neurochem ; 130(2): 301-12, 2014 Jul.
Article En | MEDLINE | ID: mdl-24661059

Finding an efficient neuroprotectant is of urgent need in the field of stroke research. The goal of this study was to test the effect of acute simvastatin administration after stroke in a rat embolic model and to explore its mechanism of action through brain proteomics. To that end, male Wistar rats were subjected to a Middle Cerebral Arteria Occlusion and simvastatin (20 mg/kg s.c) (n = 11) or vehicle (n = 9) were administered 15 min after. To evaluate the neuroprotective mechanisms of simvastatin, brain homogenates after 48 h were analyzed by two-dimensional fluorescence Difference in Gel Electrophoresis (DIGE) technology. We confirmed that simvastatin reduced the infarct volume and improved neurological impairment at 48 h after the stroke in this model. Considering our proteomics analysis, 66 spots, which revealed significant differences between groups, were analyzed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry allowing the identification of 27 proteins. From these results, we suggest that simvastatin protective effect can be partly explained by the attenuation of the oxidative and stress response at blood-brain barrier level after cerebral ischemia. Interestingly, analyzing one of the proteins (HSP75) in plasma from stroke patients who had received simvastatin during the acute phase, we confirmed the results found in the pre-clinical model. Our aim was to study statins benefits when administered during the acute phase of stroke and to explore its mechanisms of action through brain proteomics assay. Using an embolic model, simvastatin-treated rats showed significant infarct volume reduction and neurological improvement compared to vehicle-treated group. Analyzing their homogenated brains by two-dimensional fluorescence Difference in Gel Electrophoresis (DIGE) technology, we concluded that the protective effect of simvastatin can be attributable to oxidative stress response attenuation and blood-brain barrier protection after cerebral ischemia.


Brain Chemistry/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Intracranial Embolism/drug therapy , Proteomics/methods , Simvastatin/pharmacology , Stroke/drug therapy , Animals , Blotting, Western , Brain/pathology , Electrophoresis, Gel, Two-Dimensional , HSP90 Heat-Shock Proteins/blood , Humans , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Intracranial Embolism/mortality , Intracranial Embolism/pathology , Male , Neurologic Examination , Rats , Rats, Wistar , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stroke/mortality , Stroke/pathology
20.
Front Cell Neurosci ; 8: 461, 2014.
Article En | MEDLINE | ID: mdl-25642168

The immune response to acute cerebral ischemia is a major contributor to stroke pathobiology. The inflammatory response is characterized by the participation of brain resident cells and peripheral leukocytes. Microglia in the brain and monocytes/neutrophils in the periphery have a prominent role in initiating, sustaining and resolving post-ischemic inflammation. In this review we aim to summarize recent literature concerning the origins, fate and role of microglia, monocytes and neutrophils in models of cerebral ischemia and to discuss their relevance for human stroke.

...