Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886897

RESUMEN

Bacillus Calmette-Guérin (BCG) vaccine is an attenuated strain of Mycobacterium bovis that provides weak protection against tuberculosis (TB). Mast cells (MCs) are tissue-resident immune cells strategically that serve as the first line of defence against pathogenic threats. In this study, we investigated the response of human MCs (hMCs) to BCG. We found that naïve hMCs exposed to BCG did not secrete cytokines, degranulate, or support the uptake and intracellular growth of bacteria. Since we could show that in hMCs IL-33 promotes the transcription of host-pathogen interaction, cell adhesion and activation genes, we used IL-33 for cell priming. The treatment of hMCs with IL-33, but not IFN-γ, before BCG stimulation increased IL-8, MCP-1 and IL-13 secretion, and induced an enhanced expression of the mycobacteria-binding receptor CD48. These effects were comparable to those caused by the recombinant Mycobacterium tuberculosis (Mtb) 19-KDa lipoprotein. Finally, stimulation of hMCs with IL-33 incremented MC-BCG interactions. Thus, we propose that IL-33 may improve the immunogenicity of BCG vaccine by sensitising hMCs.


Asunto(s)
Vacuna BCG , Interleucina-33 , Mycobacterium bovis , Tuberculosis , Vacuna BCG/inmunología , Humanos , Interleucina-33/inmunología , Interleucina-33/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo
2.
Front Immunol ; 13: 861545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35669782

RESUMEN

Cutaneous melanoma is one of the most aggressive human malignancies and shows increasing incidence. Mast cells (MCs), long-lived tissue-resident cells that are particularly abundant in human skin where they regulate both innate and adaptive immunity, are associated with melanoma stroma (MAMCs). Thus, MAMCs could impact melanoma development, progression, and metastasis by secreting proteases, pro-angiogenic factors, and both pro-inflammatory and immuno-inhibitory mediators. To interrogate the as-yet poorly characterized role of human MAMCs, we have purified MCs from melanoma skin biopsies and performed RNA-seq analysis. Here, we demonstrate that MAMCs display a unique transcriptome signature defined by the downregulation of the FcεRI signaling pathway, a distinct expression pattern of proteases and pro-angiogenic factors, and a profound upregulation of complement component C3. Furthermore, in melanoma tissue, we observe a significantly increased number of C3+ MCs in stage IV melanoma. Moreover, in patients, C3 expression significantly correlates with the MC-specific marker TPSAB1, and the high expression of both markers is linked with poorer melanoma survival. In vitro, we show that melanoma cell supernatants and tumor microenvironment (TME) mediators such as TGF-ß, IL-33, and IL-1ß induce some of the changes found in MAMCs and significantly modulate C3 expression and activity in MCs. Taken together, these data suggest that melanoma-secreted cytokines such as TGF-ß and IL-1ß contribute to the melanoma microenvironment by upregulating C3 expression in MAMCs, thus inducing an MC phenotype switch that negatively impacts melanoma prognosis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Complemento C3/metabolismo , Humanos , Mastocitos , Melanoma/patología , Péptido Hidrolasas/metabolismo , Neoplasias Cutáneas/patología , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/genética , Regulación hacia Arriba , Melanoma Cutáneo Maligno
3.
Immun Inflamm Dis ; 8(2): 198-210, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222064

RESUMEN

INTRODUCTION: Mast cells (MCs) are tissue-resident immune cells implicated in antibacterial responses. These include chemokine secretion, degranulation, and the release of mast cell-extracellular traps, which are primarily dependent on reactive oxygen species (ROS) production. Our study investigated whether human mast cells (hMCs) develop individual response patterns to bacteria located at different tissue sites: Escherichia coli (gut commensal), Listeria monocytogenes (foodborne intracellular pathogen), Staphylococcus aureus (skin commensal and opportunistic pathogen), and Streptococcus pneumoniae (upper respiratory tract commensal and lung pathogen). METHODS: After live bacteria exposure, hMCs were analyzed by a combined flow cytometry assay for degranulation, ROS production, DNA externalization, and for ß-hexosaminidase, chemokine, and prostaglandin release. RESULTS: L. monocytogenes induced hMC degranulation, IL-8 and MCP-1 release coupled with DNA externalization in a novel hMC ROS independent manner. In contrast, S. pneumoniae caused ROS production without DNA release and degranulation. E. coli induced low levels of hMC degranulation combined with interleukin 8 and MCP-1 secretion and in the absence of ROS and DNA externalization. Finally, S. aureus induced hMCs prostaglandin D2 release and DNA release selectively. Our findings demonstrate a novel hMC phenomenon of DNA externalization independent of ROS production. We also showed that ROS production, degranulation, DNA externalization, and mediator secretion occur as independent immune reactions in hMCs upon bacterial encounter and that hMCs contribute to bacterial clearance. CONCLUSIONS: Thus, hMCs exhibit a highly individualized pattern of immune response possibly to meet tissue requirements and regulate bacteria coexistence vs defense.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Mastocitos/metabolismo , Mastocitos/microbiología , Especies Reactivas de Oxígeno/farmacología , Degranulación de la Célula/efectos de los fármacos , Quimiocina CCL2/metabolismo , ADN/metabolismo , Escherichia coli/inmunología , Citometría de Flujo , Humanos , Interleucina-8/metabolismo , Listeria monocytogenes/inmunología , Mastocitos/fisiología , Staphylococcus aureus/inmunología , Streptococcus pneumoniae/inmunología , beta-N-Acetilhexosaminidasas/metabolismo
4.
Front Immunol ; 11: 615236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33597949

RESUMEN

Both, aberrant mast cell responses and complement activation contribute to allergic diseases. Since mast cells are highly responsive to C3a and C5a, while Interleukin-33 (IL-33) is a potent mast cell activator, we hypothesized that IL-33 critically regulates mast cell responses to complement anaphylatoxins. We sought to understand whether C3a and C5a differentially activate primary human mast cells, and probe whether IL-33 regulates C3a/C5a-induced mast cell activities. Primary human mast cells were generated from peripheral blood precursors or isolated from healthy human lung tissue, and mast cell complement receptor expression, degranulation, mediator release, phosphorylation patterns, and calcium flux were assessed. Human mast cells of distinct origin express constitutively higher levels of C3aR1 than C5aR1, and both receptors are downregulated by anaphylatoxins. While C3a is a potent mast cell degranulation inducer, C5a is a weaker secretagogue with more delayed effects. Importantly, IL-33 potently enhances the human mast cell reactivity to C3a and C5a (degranulation, cytokine and chemokine release), independent of changes in C3a or C5a receptor expression or the level of Ca2+ influx. Instead, this reflects differential dynamics of intracellular signaling such as ERK1/2 phosphorylation. Since primary human mast cells respond differentially to anaphylatoxin stimulation, and that IL-33 is a key regulator of mast cell responses to complement anaphylatoxins, this is likely to aggravate Th2 immune responses. This newly identified cross-regulation may be important for controlling exacerbated complement- and mast cell-dependent Th2 responses and thus provides an additional rationale for targeting anti-IL33 therapeutically in allergic diseases.


Asunto(s)
Complemento C3a/farmacología , Complemento C5a/farmacología , Interleucina-33/farmacología , Mastocitos/efectos de los fármacos , Antígenos CD/biosíntesis , Antígenos CD/genética , Células Sanguíneas , Señalización del Calcio/efectos de los fármacos , Degranulación de la Célula/efectos de los fármacos , Células Cultivadas , Complemento C3a/inmunología , Complemento C5a/inmunología , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interferón gamma/farmacología , Interleucina-4/farmacología , Ligandos , Pulmón/citología , Mastocitos/inmunología , Mastocitos/metabolismo , Proteínas de la Membrana/metabolismo , Especificidad de Órganos , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de Complemento/biosíntesis , Receptores de Complemento/genética
5.
Front Immunol ; 8: 1290, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29089945

RESUMEN

Tuberculosis causes more annual deaths globally than any other infectious disease. However, progress in developing novel vaccines, diagnostics, and therapies has been hampered by an incomplete understanding of the immune response to Mycobacterium tuberculosis (Mtb). While the role of many immune cells has been extensively explored, mast cells (MCs) have been relatively ignored. MCs are tissue resident cells involved in defense against bacterial infections playing an important role mediating immune cell crosstalk. This review discusses specific interactions between MCs and Mtb, their contribution to both immunity and disease pathogenesis, and explores their role in orchestrating other immune cells against infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...