Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
NPJ Aging ; 9(1): 14, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37393393

Microgravity accelerates the aging of various physiological systems, and it is well acknowledged that aged individuals and astronauts both have increased susceptibility to infections and poor response to vaccination. Immunologically, dendritic cells (DCs) are the key players in linking innate and adaptive immune responses. Their distinct and optimized differentiation and maturation phases play a critical role in presenting antigens and mounting effective lymphocyte responses for long-term immunity. Despite their importance, no studies to date have effectively investigated the effects of microgravity on DCs in their native microenvironment, which is primarily located within tissues. Here, we address a significantly outstanding research gap by examining the effects of simulated microgravity via a random positioning machine on both immature and mature DCs cultured in biomimetic collagen hydrogels, a surrogate for tissue matrices. Furthermore, we explored the effects of loose and dense tissues via differences in collagen concentration. Under these various environmental conditions, the DC phenotype was characterized using surface markers, cytokines, function, and transcriptomic profiles. Our data indicate that aged or loose tissue and exposure to RPM-induced simulated microgravity both independently alter the immunogenicity of immature and mature DCs. Interestingly, cells cultured in denser matrices experience fewer effects of simulated microgravity at the transcriptome level. Our findings are a step forward to better facilitate healthier future space travel and enhance our understanding of the aging immune system on Earth.

2.
Adv Sci (Weinh) ; 10(22): e2301353, 2023 08.
Article En | MEDLINE | ID: mdl-37249413

Collagen alignment is one of the key microarchitectural signatures of many pathological conditions, including scarring and fibrosis. Investigating how collagen alignment modulates cellular functions will pave the way for understanding tissue scarring and regeneration and new therapeutic strategies. However, current approaches for the fabrication of three-dimensional (3D) aligned collagen matrices are low-throughput and require special devices. To overcome these limitations, a simple approach to reconstitute homogeneous 3D collagen matrices with adjustable degree of fibril alignment using 3D printed inclined surfaces is developed. By characterizing the mechanical properties of reconstituted matrices, it is found that the elastic modulus of collagen matrices is enhanced with an increase in the alignment degree. The reconstituted matrices are used to study fibroblast behavior to reveal the progression of scar formation where a gradual enhancement of collagen alignment can be observed. It is found that matrices with aligned fibrils trigger fibroblast differentiation into myofibroblasts via cell contractility, while collagen stiffening through a crosslinker does not. The results suggest the impact of collagen fibril organization on the regulation of fibroblast differentiation. Overall, this approach to reconstitute 3D collagen matrices with fibril alignment opens opportunities for biomimetic pathological-relevant tissue in vitro, which can be applied for other biomedical research.


Cicatrix , Extracellular Matrix , Humans , Extracellular Matrix/metabolism , Collagen/metabolism , Fibroblasts , Cell Differentiation
3.
Cell Mol Life Sci ; 79(9): 508, 2022 Sep 05.
Article En | MEDLINE | ID: mdl-36063234

Human space travel and exploration are of interest to both the industrial and scientific community. However, there are many adverse effects of spaceflight on human physiology. In particular, there is a lack of understanding of the extent to which microgravity affects the immune system. T cells, key players of the adaptive immune system and long-term immunity, are present not only in blood circulation but also reside within the tissue. As of yet, studies investigating the effects of microgravity on T cells are limited to peripheral blood or traditional 2D cell culture that recapitulates circulating blood. To better mimic interstitial tissue, 3D cell culture has been well established for physiologically and pathologically relevant models. In this work, we utilize 2D cell culture and 3D collagen matrices to gain an understanding of how simulated microgravity, using a random positioning machine, affects both circulating and tissue-resident T cells. T cells were studied in both resting and activated stages. We found that 3D cell culture attenuates the effects of simulated microgravity on the T cells transcriptome and nuclear irregularities compared to 2D cell culture. Interestingly, simulated microgravity appears to have less effect on activated T cells compared to those in the resting stage. Overall, our work provides novel insights into the effects of simulated microgravity on circulating and tissue-resident T cells which could provide benefits for the health of space travellers.


Weightlessness , Cell Culture Techniques , Humans , T-Lymphocytes , Transcriptome , Weightlessness Simulation
4.
NPJ Regen Med ; 6(1): 83, 2021 Nov 30.
Article En | MEDLINE | ID: mdl-34848722

Distinct anti-inflammatory macrophage (M2) subtypes, namely M2a and M2c, are reported to modulate the tissue repair process tightly and chronologically by modulating fibroblast differentiation state and functions. To establish a well-defined three-dimensional (3D) cell culture model to mimic the tissue repair process, we utilized THP-1 human monocytic cells and a 3D collagen matrix as a biomimetic tissue model. THP-1 cells were differentiated into macrophages, and activated using IL-4/IL-13 (MIL-4/IL-13) and IL-10 (MIL-10). Both activated macrophages were characterized by both their cell surface marker expression and cytokine secretion profile. Our cell characterization suggested that MIL-4/IL-13 and MIL-10 demonstrate M2a- and M2c-like subtypes, respectively. To mimic the initial and resolution phases during the tissue repair, both activated macrophages were co-cultured with fibroblasts and myofibroblasts. We showed that MIL-4/IL-13 were able to promote matrix synthesis and remodeling by induction of myofibroblast differentiation via transforming growth factor beta-1 (TGF-ß1). On the contrary, MIL-10 demonstrated the ability to resolve the tissue repair process by dedifferentiation of myofibroblast via IL-10 secretion. Overall, our study demonstrated the importance and the exact roles of M2a and M2c-like macrophage subtypes in coordinating tissue repair in a biomimetic model. The established model can be applied for high-throughput platforms for improving tissue healing and anti-fibrotic drugs testing, as well as other biomedical studies.

5.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article En | MEDLINE | ID: mdl-34769342

Exposure to microgravity affects astronauts' health in adverse ways. However, less is known about the extent to which fibroblast differentiation during the wound healing process is affected by the lack of gravity. One of the key steps of this process is the differentiation of fibroblasts into myofibroblasts, which contribute functionally through extracellular matrix production and remodeling. In this work, we utilized collagen-based three-dimensional (3D) matrices to mimic interstitial tissue and studied fibroblast differentiation under simulated microgravity (sµG). Our results demonstrated that alpha-smooth muscle actin (αSMA) expression and translocation of Smad2/3 into the cell nucleus were reduced upon exposure to sµG compared to the 1g control, which suggests the impairment of fibroblast differentiation under sµG. Moreover, matrix remodeling and production were decreased under sµG, which is in line with the impaired fibroblast differentiation. We further investigated changes on a transcriptomic level using RNA sequencing. The results demonstrated that sµG has less effect on fibroblast transcriptomes, while sµG triggers changes in the transcriptome of myofibroblasts. Several genes and biological pathways found through transcriptome analysis have previously been reported to impair fibroblast differentiation. Overall, our data indicated that fibroblast differentiation, as well as matrix production and remodeling, are impaired in 3D culture under sµG conditions.


Cell Differentiation , Extracellular Matrix/pathology , Fibroblasts/pathology , Weightlessness Simulation/adverse effects , Weightlessness , Actins/genetics , Actins/metabolism , Cell Culture Techniques, Three Dimensional , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
6.
Cells ; 10(8)2021 07 30.
Article En | MEDLINE | ID: mdl-34440709

All terrestrial organisms have evolved and adapted to thrive under Earth's gravitational force. Due to the increase of crewed space flights in recent years, it is vital to understand how the lack of gravitational forces affects organisms. It is known that astronauts who have been exposed to microgravity suffer from an array of pathological conditions including an impaired immune system, which is one of the most negatively affected by microgravity. However, at the cellular level a gap in knowledge exists, limiting our ability to understand immune impairment in space. This review highlights the most significant work done over the past 10 years detailing the effects of microgravity on cellular aspects of the immune system.


Adaptive Immunity , Immune System/immunology , Immunity, Innate , Space Flight , Weightlessness/adverse effects , Animals , Humans , Immune System/metabolism , Immune System/physiopathology , Mechanotransduction, Cellular , Weightlessness Simulation/adverse effects
7.
Int J Mol Sci ; 22(12)2021 Jun 13.
Article En | MEDLINE | ID: mdl-34199262

As the number of manned space flights increase, studies on the effects of microgravity on the human body are becoming more important. Due to the high expense and complexity of sending samples into space, simulated microgravity platforms have become a popular way to study these effects on earth. In addition, simulated microgravity has recently drawn the attention of regenerative medicine by increasing cell differentiation capability. These platforms come with many advantages as well as limitations. A main limitation for usage of these platforms is the lack of high-throughput capability due to the use of large cell culture vessels. Therefore, there is a requirement for microvessels for microgravity platforms that limit waste and increase throughput. In this work, a microvessel for commercial cell culture plates was designed. Four 3D printable (polycarbonate (PC), polylactic acid (PLA) and resin) and castable (polydimethylsiloxane (PDMS)) materials were assessed for biocompatibility with adherent and suspension cell types. PDMS was found to be the most suitable material for microvessel fabrication, long-term cell viability and proliferation. It also allows for efficient gas exchange, has no effect on cell culture media pH and does not induce hypoxic conditions. Overall, the designed microvessel can be used on simulated microgravity platforms as a method for long-term high-throughput biomedical studies.


Cell Culture Techniques/methods , Microvessels/physiology , Tissue Engineering/methods , Weightlessness Simulation , Biocompatible Materials/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/metabolism , Humans , Inflammation Mediators/metabolism , Jurkat Cells , Materials Testing , Microvessels/drug effects , THP-1 Cells
8.
Bioengineering (Basel) ; 7(3)2020 Sep 16.
Article En | MEDLINE | ID: mdl-32947976

Atherosclerosis, the inflammation of artery walls due to the accumulation of lipids, is the most common underlying cause for cardiovascular diseases. Monocytes and macrophages are major cells that contribute to the initiation and progression of atherosclerotic plaques. During this process, an accumulation of LDL-laden macrophages (foam cells) and an alteration in the extracellular matrix (ECM) organization leads to a local vessel stiffening. Current in vitro models are carried out onto two-dimensional tissue culture plastic and cannot replicate the relevant microenvironments. To bridge the gap between in vitro and in vivo conditions, we utilized three-dimensional (3D) collagen matrices that allowed us to mimic the ECM stiffening during atherosclerosis by increasing collagen density. First, human monocytic THP-1 cells were embedded into 3D collagen matrices reconstituted at low and high density. Cells were subsequently differentiated into uncommitted macrophages (M0) and further activated into pro- (M1) and anti-inflammatory (M2) phenotypes. In order to mimic atherosclerotic conditions, cells were cultured in the presence of oxidized LDL (oxLDL) and analyzed in terms of oxLDL uptake capability and relevant receptors along with their cytokine secretomes. Although oxLDL uptake and larger lipid size could be observed in macrophages in a matrix dependent manner, monocytes showed higher numbers of oxLDL uptake cells. By analyzing major oxLDL uptake receptors, both monocytes and macrophages expressed lectin-like oxidized low-density lipoprotein receptor-1 (LOX1), while enhanced expression of scavenger receptor CD36 could be observed only in M2. Notably, by analyzing the secretome of macrophages exposed to oxLDL, we demonstrated that the cells could, in fact, secrete adipokines and growth factors in distinct patterns. Besides, oxLDL appeared to up-regulate MHCII expression in all cells, while an up-regulation of CD68, a pan-macrophage marker, was found only in monocytes, suggesting a possible differentiation of monocytes into a pro-inflammatory macrophage. Overall, our work demonstrated that collagen density in the plaque could be one of the major factors driving atherosclerotic progression via modulation of monocyte and macrophages behaviors.

9.
Biomater Sci ; 8(18): 5106-5120, 2020 Sep 15.
Article En | MEDLINE | ID: mdl-32812979

Dendritic cells (DCs) are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. Understanding how biophysical properties affect DC behaviors will provide insight into the biology of a DC and its applications. In this work, we studied how cell culture dimensionality (two-dimensional (2D) and three-dimensional (3D)), and matrix density of 3D collagen matrices modulate differentiation and functions of DCs. Besides, we aimed to point out the different conceptual perspectives in modern immunological research, namely tissue-centric and cell-centric perspectives. The tissue-centric perspective intends to reveal how specific microenvironments dictate DC differentiation and in turn modulate DC functionalities, while the cell-centric perspective aims to demonstrate how pre-differentiated DCs behave in specific microenvironments. DC plasticity was characterized in terms of cell surface markers and cytokine secretion profiles. Subsequently, antigen internalization and T cell activation were quantified to demonstrate the cellular functions of immature DCs (iDCs) and mature DCs (mDCs), respectively. In the tissue-centric perspective, we found that expressed surface markers and secreted cytokines of both iDCs and mDCs are generally higher in 2D culture, while they are regulated by matrix density in 3D culture. In contrast, in the cell-centric perspective, we found enhanced expression of cell surface markers as well as distinct cytokine secretion profiles in both iDCs and mDCs. By analyzing cellular functions of cells in the tissue-centric perspective, we found matrix density dependence in antigen uptake by iDCs, as well as on mDC-mediated T cell proliferation in 3D cell culture. On the other hand, in the cell-centric perspective, both iDCs and mDCs appeared to lose their functional potentials to internalization antigen and T cell stimulation. Additionally, mDCs from tissue- and cell-centric perspectives modulated T cell differentiation by their distinct cytokine secretion profiles towards Th1 and Th17, respectively. In sum, our work emphasizes the importance of dimensionality, as well as collagen fibrillar density in the regulation of the immune response of DCs. Besides this, we demonstrated that the conceptual perspective of the experimental design could be an essential key point in research in immune cell-material interactions and biomaterial-based disease models of immunity.


Dendritic Cells , Lymphocyte Activation , Cell Differentiation , Cells, Cultured , Collagen , Cytokines
10.
Adv Biosyst ; 4(7): e2000039, 2020 07.
Article En | MEDLINE | ID: mdl-32453495

T cell activation is triggered by signal molecules on the surface of antigen-presenting cells (APC) and subsequent exertion of cellular forces. Deciphering the biomechanical and biochemical signals in this complex process is of interest and will contribute to an improvement in immunotherapy strategies. To address underlying questions, coculture and biomimetic models are established. Mature dendritic cells (mDC) are first treated with cytochalasin B (CytoB), a cytoskeletal disruption agent known to lower apparent cellular stiffness and reduction in T cell proliferation is observed. It is attempted to mimic mDC and T cell interactions using polyacrylamide (PA) gels with defined stiffness corresponding to mDC (0.2-25 kPa). Different ratios of anti-CD3 (aCD3) and anti-CD28 (aCD28) antibodies are immobilized onto PA gels. The results show T cell proliferation is triggered by both aCD3 and aCD28 in a stiffness-dependent manner. Cells cultured on aCD3 immobilized on gels has significantly enhanced proliferation and IL-2 secretion, compared to aCD28. Furthermore, ZAP70 phosphorylation is enhanced in stiffer substrate a in a aCD3-dependent manner. The biosystem provides an approach to study the reduction of T cell proliferation observed on CytoB-treated mDC. Overall, the biosystem allows distinguishing the impact of biophysical and biochemical signals of APC and T cell interactions in vitro.


Cell Communication/immunology , Cell Proliferation , Dendritic Cells/immunology , T-Lymphocytes/immunology , Coculture Techniques , Humans , Jurkat Cells , THP-1 Cells
11.
Bioengineering (Basel) ; 7(2)2020 Mar 31.
Article En | MEDLINE | ID: mdl-32244521

Monocytes circulate in the bloodstream, extravasate into the tissue and differentiate into specific macrophage phenotypes to fulfill the immunological needs of tissues. During the tissue repair process, tissue density transits from loose to dense tissue. However, little is known on how changes in tissue density affects macrophage activation and their cellular functions. In this work, monocytic cell line THP-1 cells were embedded in three-dimensional (3D) collagen matrices with different fibril density and were then differentiated into uncommitted macrophages (MPMA) using phorbol-12-myristate-13-acetate (PMA). MPMA macrophages were subsequently activated into pro-inflammatory macrophages (MLPS/IFNγ) and anti-inflammatory macrophages (MIL-4/IL-13) using lipopolysaccharide and interferon-gamma (IFNγ), and interleukin 4 (IL-4) and IL-13, respectively. Although analysis of cell surface markers, on both gene and protein levels, was inconclusive, cytokine secretion profiles, however, demonstrated differences in macrophage phenotype. In the presence of differentiation activators, MLPS/IFNγ secreted high amounts of IL-1ß and tumor necrosis factor alpha (TNFα), while M0PMA secreted similar cytokines to MIL-4/IL-13, but low IL-8. After removing the activators and further culture for 3 days in fresh cell culture media, the secretion of IL-6 was found in high concentrations by MIL-4/IL-13, followed by MLPS/IFNγ and MPMA. Interestingly, the secretion of cytokines is enhanced with an increase of fibril density. Through the investigation of macrophage-associated functions during tissue repair, we demonstrated that M1LPS/IFNγ has the potential to enhance monocyte infiltration into tissue, while MIL-4/IL-13 supported fibroblast differentiation into myofibroblasts via transforming growth factor beta 1 (TGF-ß1) in dependence of fibril density, suggesting a M2a-like phenotype. Overall, our results suggest that collagen fibril density can modulate macrophage response to favor tissue functions. Understanding of immune response in such complex 3D microenvironments will contribute to the novel therapeutic strategies for improving tissue repair, as well as guidance of the design of immune-modulated materials.

12.
Adv Healthc Mater ; 8(4): e1801126, 2019 02.
Article En | MEDLINE | ID: mdl-30516005

The immune microenvironment presents a diverse panel of cues that impacts immune cell migration, organization, differentiation, and the immune response. Uniquely, both the liquid and solid phases of every specific immune niche within the body play an important role in defining cellular functions in immunity at that particular location. The in vivo immune microenvironment consists of biomechanical and biochemical signals including their gradients, surface topography, dimensionality, modes of ligand presentation, and cell-cell interactions, and the ability to recreate these immune biointerfaces in vitro can provide valuable insights into the immune system. This manuscript reviews the critical roles played by different immune cells and surveys the current progress of model systems for reverse engineering of immune microenvironments with a focus on lymphoid tissues.


Cellular Microenvironment/immunology , Lymphoid Tissue/immunology , Models, Immunological , Tissue Engineering , Animals , Humans
13.
J Acoust Soc Am ; 135(3): 1056-63, 2014 Mar.
Article En | MEDLINE | ID: mdl-24606249

A method for the experimental measurement of inter-particle forces (secondary Bjerknes force) generated by the action of an acoustic field in a resonator micro-channel is presented. The acoustic radiation force created by an ultrasonic standing wave moves suspended particles towards the pressure nodes and the acoustic pressure induces particle volume oscillations. Once particles are in the levitation plane, transverse and secondary Bjerknes forces become important. Experiments were carried out in a resonator filled with a suspension composed of water and latex particles of different size (5-15 µm) at different concentrations. Ultrasound was generated by means of a 2.5 MHz nominal frequency transducer. For the first time the acoustic force generated by oscillating particles acting on other particles has been measured, and the critical interaction distance in various cases has been determined. Inter-particle forces on the order of 10(-14) N have been measured by using this method.


Sound , Ultrasonics , Latex , Microspheres , Models, Theoretical , Motion , Particle Size , Pressure , Time Factors , Transducers , Ultrasonics/instrumentation , Vibration , Viscosity , Water
...