Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 926: 171928, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38531457

RESUMEN

Styrene butadiene rubber is one of the main constituents of tire tread. During tire life, the tread material undergoes different stresses that impact its structure and chemical composition. Wear particles are then released into the environment as weathered material. To understand their fate, it is important to start with a better characterization of abiotic and biotic degradation of the elastomer material. A multi-disciplinary approach was implemented to study the photo- and thermo- degradation of non-vulcanized SBR films containing 15 w% styrene as well as their potential biodegradation by Rhodoccocus ruber and Gordonia polyisoprenivorans bacterial strains. Each ageing process leads to crosslinking reactions, much surface oxidation of the films and the production of hundreds of short chain compounds. These degradation products present a high level of unsaturation and oxidation and can be released into water to become potential substrates for microorganisms. Both strains were able to degrade from 0.2 to 1.2 % (% ThOD) of the aged SBR film after 30-day incubation while no biodegradation was observed on the pristine material. A 25-75 % decrease in the signal intensity of water extractable compounds was observed, suggesting that biomass production was linked to the consumption of low-molecular-weight degradation products. These results evidence the positive impact of abiotic degradation on the biodegradation process of styrene butadiene rubber.


Asunto(s)
Butadienos , Elastómeros , Goma , Estirenos , Estireno , Agua
2.
Mar Pollut Bull ; 171: 112701, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34245992

RESUMEN

The increase of plastic production from the middle of the twentieth century was inevitably followed by an increase in the amount of plastic dumped in the natural environment. There, the plastic debris are exposed to sunlight, temperature, humidity, and physical stress. This can induce photo-oxidative and thermal degradation. This review discusses the mechanism of plastics UV weathering and its characteristics. Comparison of the photodegradation rate and physico-chemical properties are made according to the weathering mode (natural/accelerated) and medium (air/water). Since the photodegradation can lead to plastics fragmentation, this phenomenon is described along with the methodologies used in literature to evaluate the fragmentation. The impact of the photodegraded plastic debris on the marine environment is also presented in term of (i) photodegradation products and stabilizers leakage, (ii) organic pollutants accumulation, transfer, and leakage, and (iii) toxicity on marine organisms.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Organismos Acuáticos , Monitoreo del Ambiente , Luz Solar , Residuos/análisis , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
3.
Carbohydr Polym ; 259: 117715, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33673991

RESUMEN

Chitosan films were subjected to accelerated artificial weathering at λ>300 nm and 60 °C in the presence of O2. The resulting variations in the chemical structure were characterized by IR spectroscopy and UV-vis spectroscopy, and a photooxidation mechanism was proposed based on the identified oxidation photoproducts. The formation of gluconolactone derivatives leading to chain scissions was shown. In addition, low molecular weight photoproducts, which accounted for chitosan deacetylation, were detected. Furthermore, crosslinking reactions occurred, as revealed by gel fraction characterization. Variations in the mechanical and surface properties were characterized by AFM, and the reduction in macroscopic properties was correlated with the structural changes observed at the molecular scale by a multiscale approach.

4.
Rev Sci Instrum ; 90(1): 014710, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30709217

RESUMEN

Organic photovoltaic (OPV) devices and other organic electronics have the promise to provide lightweight, flexible alternatives to traditional rigid semiconductor technologies. However, organic electronics often degrade rapidly upon exposure to oxygen, water, light, and combinations thereof, as well as upon exposure to elevated temperatures. This requires the use of high gas barrier packaging in order for devices to have operational lifetimes on the order of years. To meet the challenge of transparent high gas barrier materials which maintain the flexibility of organic optoelectronics, many different materials and encapsulation schemes have been developed including the lamination of devices between flexible multi-layer barrier films. Because of their excellent barrier properties, these materials often require specialized testing for permeation measurements which evaluate materials independently. In this work, we demonstrate the use of an optical calcium test, which uses a sample geometry that closely mimics an OPV device, to evaluate a complete encapsulation scheme and to elucidate the relative importance of different permeation pathways. Using an encapsulation scheme of laminating a device between two multi-layer barrier films using an adhesive, measurements were made for water vapor permeation through the barrier film, the bulk adhesive, and along the adhesive-to-barrier film interface. The results show that the combined lateral permeation, including through the bulk adhesive and along the adhesive-to-barrier film interface, can constitute over 50% of the total permeation for small devices (4.5 cm × 4.5 cm). The adhesive-to-barrier film interface was also found to be a very important pathway as it was deemed responsible for more permeation than the bulk adhesive. The technique was also used to evaluate encapsulation design variables such as the effects of adhesive thickness and surface treatments on the lateral water permeation. We demonstrate that decreasing the adhesive thickness leads to a decrease in the lateral water permeation.

5.
Phys Chem Chem Phys ; 17(28): 18751-60, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26119104

RESUMEN

This paper is devoted to the characterization of polymer-filler interfaces by thermoporosimetry using water as a probe. Composites of EVA filled with aluminium hydroxide with high filler content for the required fire retardant properties have been studied. After water sorption at 90 °C, the composites have been analyzed by thermoporosimetry using water as a morphological probe. This technique first allowed studying the influence of the filler content and the specific surface area on the water uptake. The study with drying steps and two molecular probes (water and cyclohexane) has highlighted that water is confined at the interface and thus thermoporosimetry is a powerful tool to characterize interfaces in EVA-ATH composites.

6.
Chem Phys Lipids ; 170-171: 1-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23470324

RESUMEN

The oil extracted from the bean of Balanites aegyptiaca was characterized, and its photochemical and thermal stabilization were evaluated. The chemical composition was determined using gas chromatography (GC), revealing that the oil is very rich in unsaturated fatty acids (72% omega-6 and omega-9). The photochemical stability was assessed by subjecting it to artificially accelerated photo-aging and then examining the changes using infrared spectroscopy. The thermal stability was studied at six different temperatures ranging from 130 to 200°C and monitored in situ by differential scanning calorimetry (DSC). The kinetic parameters (EA and k) describing the thermal degradation of this oil were calculated. It has been shown that the antioxidants present in the oil delay the oxidation process (induction period). The degradation of the Toogga oil was compared with that of oleic and linoleic fatty acids. In addition, the degradation of the Toogga oil extracted with hexane was compared to that of the neat oil.


Asunto(s)
Balanites/química , Ácidos Grasos Insaturados/química , Temperatura , Rastreo Diferencial de Calorimetría , Procesos Fotoquímicos , Espectroscopía Infrarroja por Transformada de Fourier
7.
Biomacromolecules ; 13(10): 3283-91, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-22967047

RESUMEN

This study reports the effect of light on PLA/ZnO nanocomposites films produced by melt-extrusion. The attention focused on the discrimination between the photocatalytic degradation of PLA provoked by ZnO and the UV screening effect of the ZnO nanoparticles. The chemical modifications of PLA induced by UV light irradiation were analyzed using infrared spectroscopy and completed through the analysis of the low-molecular-weight photoproducts using IC and SPME and the characterization of chain scissions with SEC. A comprehensive mechanism for the photooxidation of PLA was then proposed. The results indicated that the photocatalytic activity of ZnO nanoparticles induces the oxidation of PLA. Because ZnO limits the penetration of light inside the samples, this effect mainly concerns the first micrometers at the surface of the exposed samples. Cross-sectional analysis using micro-IR and ATR-IR spectroscopies was performed to highlight the degradation profile in the PLA/ZnO nanocomposites.


Asunto(s)
Nanocompuestos/química , Poliésteres/química , Óxido de Zinc/química , Tamaño de la Partícula , Procesos Fotoquímicos , Propiedades de Superficie , Rayos Ultravioleta
8.
Phys Chem Chem Phys ; 14(35): 12301-8, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22858912

RESUMEN

The crystallization of PLA-silane surface-treated ZnO nanocomposites was investigated by DSC and compared to that of neat PLA. Several modes of crystallization were considered: isothermal and non-isothermal cold crystallization and also isothermal and non-isothermal melt crystallization. The kinetics of cold crystallization were studied using different methods, namely the Avrami and Ozawa-Flynn-Wall models, to calculate activation energies and kinetic constants. In contrast to what is typically observed when the foreign particles are added in a polymer matrix, the silane surface-treated ZnO delayed the crystallization of PLA and made it more difficult to start. The nucleation activity of the ZnO nanoparticles, ϕ, was calculated and found to be greater than 1 (ϕ = 1.7). This indicated that ZnO played an anti-nucleating role in the crystallization of PLA nanocomposites. This effect has been linked mainly to the interactions between the silane groups onto the surface of nanoparticles and PLA macromolecules. These interactions which reduce the mobility of polymer chains have been evidenced by rheological experiments.


Asunto(s)
Ácido Láctico/química , Nanocompuestos/química , Polímeros/química , Silanos/química , Óxido de Zinc/química , Rastreo Diferencial de Calorimetría , Cristalización , Poliésteres , Propiedades de Superficie
9.
J Phys Chem B ; 116(2): 802-12, 2012 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-22181834

RESUMEN

During the past decade, the development of polymeric solar cells has received a great deal of attention from both academic and industrial laboratories. In order to enhance the device performances both in terms of power conversion efficiency stability in use conditions, Polycarbazole copolymers have attracted increasing attention. In this paper, the photodegradation of poly(N-vinylcarbazole) (PVK) was investigated from the molecular scale to the nanomechanical properties. It was shown irradiation provoked chain scissions, homolysis of the C-N bond and formation of new covalent bonds between the macromolecular chains. To fully understand the mechanism of the degradation of PVK provoked by exposure to UV radiation, mechanical analyses were performed. The consequences of the cross-linking reactions on the surface modifications were analyzed. Roughness and stiffness measurements were obtained through surface analysis and nanoindentation by atomic force microscopy (AFM), and depth-profiling experiments were also performed. The surface modifications and the shape of the profiles of the degradation photoproducts were explained in light of the chemical modifications of the PVK structure. Quantitative correlations were successfully obtained between the main relevant criteria of degradation, from the chemical structure to the mechanical properties. It was found that cross-linking reactions were prevalent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA