Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 31(2): 145-58, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25373775

RESUMEN

The Piwi/Piwi-interacting RNA (piRNA) pathway protects the germline from the activity of foreign sequences such as transposons. Remarkably, tens of thousands of piRNAs arise from a minimal number of discrete genomic regions. The extent to which clustering of these small RNA genes contributes to their coordinated expression remains unclear. We show that C. elegans SNPC-4, the Myb-like DNA-binding subunit of the small nuclear RNA activating protein complex, binds piRNA clusters in a germline-specific manner and is required for global piRNA expression. SNPC-4 localization is mutually dependent with localization of piRNA biogenesis factor PRDE-1. SNPC-4 exhibits an atypical widely distributed binding pattern that "coats" piRNA domains. Discrete peaks within the domains occur frequently at RNA-polymerase-III-occupied transfer RNA (tRNA) genes, which have been implicated in chromatin organization. We suggest that SNPC-4 binding establishes a positive expression environment across piRNA domains, providing an explanation for the conserved clustering of individually transcribed piRNA genes.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética , ARN Polimerasa III/genética , ARN Interferente Pequeño/genética , Análisis de Secuencia de ARN , Transducción de Señal/genética , Factores de Transcripción/genética
2.
Neuron ; 81(3): 561-73, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24440228

RESUMEN

The ability of injured axons to regenerate declines with age, yet the mechanisms that regulate axon regeneration in response to age are not known. Here we show that axon regeneration in aging C. elegans motor neurons is inhibited by the conserved insulin/IGF1 receptor DAF-2. DAF-2's function in regeneration is mediated by intrinsic neuronal activity of the forkhead transcription factor DAF-16/FOXO. DAF-16 regulates regeneration independently of lifespan, indicating that neuronal aging is an intrinsic, neuron-specific, and genetically regulated process. In addition, we found that DAF-18/PTEN inhibits regeneration independently of age and FOXO signaling via the TOR pathway. Finally, DLK-1, a conserved regulator of regeneration, is downregulated by insulin/IGF1 signaling, bound by DAF-16 in neurons, and required for both DAF-16- and DAF-18-mediated regeneration. Together, our data establish that insulin signaling specifically inhibits regeneration in aging adult neurons and that this mechanism is independent of PTEN and TOR.


Asunto(s)
Envejecimiento/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Degeneración Nerviosa/fisiopatología , Regeneración Nerviosa/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Humanos , Inmunosupresores/farmacología , Factor I del Crecimiento Similar a la Insulina/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Regeneración Nerviosa/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Epigenetics ; 9(1): 62-74, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24149573

RESUMEN

While most eukaryotic genomes contain transposable elements that can provide select evolutionary advantages to a given organism, failure to tightly control the mobility of such transposable elements can result in compromised genomic integrity of both parental and subsequent generations. Together with the Piwi subfamily of Argonaute proteins, small, non-coding Piwi-interacting RNAs (piRNAs) primarily function in the germ line to defend the genome against the potentially deleterious effects that can be caused by transposition. Here, we describe recent discoveries concerning the biogenesis and function of piRNAs in the nematode Caenorhabditis elegans, illuminating how the faithful production of these mature species can impart a robust defense mechanism for the germ line to counteract problems caused by foreign genetic elements across successive generations by contributing to the epigenetic memory of non-self vs. self.


Asunto(s)
Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Elementos Transponibles de ADN , Epigénesis Genética , Inestabilidad Genómica , Humanos , ARN Interferente Pequeño/genética , Reproducción
4.
J Mol Biol ; 409(1): 36-46, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21272588

RESUMEN

Histones, the fundamental packaging elements of eukaryotic DNA, are highly decorated with a diverse set of post-translational modifications (PTMs) that are recognized to govern the structure and function of chromatin. Ten years ago, we put forward the histone code hypothesis, which provided a model to explain how single and/or combinatorial PTMs on histones regulate the diverse activities associated with chromatin (e.g., gene transcription). At that time, there was a limited understanding of both the number of PTMs that occur on histones and the proteins that place, remove, and interpret them. Since the conception of this hypothesis, the field has witnessed an unprecedented advance in our understanding of the enzymes that contribute to the establishment of histone PTMs, as well as the diverse effector proteins that bind them. While debate continues as to whether histone PTMs truly constitute a strict "code," it is becoming clear that PTMs on histone proteins function in elaborate combinations to regulate the many activities associated with chromatin. In this special issue, we celebrate the 50th anniversary of the landmark publication of the lac operon with a review that provides a current view of the histone code hypothesis, the lessons we have learned over the last decade, and the technologies that will drive our understanding of histone PTMs forward in the future.


Asunto(s)
Cromatina/metabolismo , ADN/metabolismo , Células Eucariotas/fisiología , Regulación de la Expresión Génica , Histonas/metabolismo , Biología Molecular/historia , Historia del Siglo XX , Historia del Siglo XXI , Biología Molecular/tendencias , Procesamiento Proteico-Postraduccional
5.
PLoS One ; 6(1): e16244, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-21249157

RESUMEN

Recent technological advancements have allowed for highly-sophisticated mass spectrometry-based studies of the histone code, which predicts that combinations of post-translational modifications (PTMs) on histone proteins result in defined biological outcomes mediated by effector proteins that recognize such marks. While significant progress has been made in the identification and characterization of histone PTMs, a full appreciation of the complexity of the histone code will require a complete understanding of all the modifications that putatively contribute to it. Here, using the top-down mass spectrometry approach for identifying PTMs on full-length histones, we report that lysine 37 of histone H2B is dimethylated in the budding yeast Saccharomyces cerevisiae. By generating a modification-specific antibody and yeast strains that harbor mutations in the putative site of methylation, we provide evidence that this mark exist in vivo. Importantly, we show that this lysine residue is highly conserved through evolution, and provide evidence that this methylation event also occurs in higher eukaryotes. By identifying a novel site of histone methylation, this study adds to our overall understanding of the complex number of histone modifications that contribute to chromatin function.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Código de Histonas , Espectrometría de Masas/métodos , Metilación , Saccharomyces cerevisiae/genética
6.
J Cell Biol ; 186(3): 371-7, 2009 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-19667127

RESUMEN

Histone H2B monoubiquitination by Rad6/Bre1 is required for the trimethylation of both histone H3K4 and H3K79 by COMPASS and Dot1 methyltransferases, respectively. The dependency of methylation at H3K4 and H3K79 on the monoubiquitination of H2BK123 was recently challenged, and extragenic mutations in the strain background used for previous studies or epitope-tagged proteins were suggested to be the sources of this discrepancy. In this study, we show that H3K4 and H3K79 methylation is solely dependent on H2B monoubiquitination regardless of any additional alteration to the H2B sequence or genome. Furthermore, we report that Y131, one of the yeast histone H2A/H2B shuffle strains widely used for the last decade in the field of chromatin and transcription biology, carries a wild-type copy of each of the HTA2 and HTB2 genes under the GAL1/10 promoter on chromosome II. Therefore, we generated the entire histone H2A and H2B alanine-scanning mutant strains in another background, which does not express wild-type histones.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Ubiquitinación , Alanina/genética , Alanina/metabolismo , Histonas/genética , Metilación , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
Mol Cell Biol ; 27(11): 3951-61, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17371840

RESUMEN

Histone methylation is an important posttranslational modification that contributes to chromatin-based processes including transcriptional regulation, DNA repair, and epigenetic inheritance. In the budding yeast Saccharomyces cerevisiae, histone lysine methylation occurs on histone H3 lysines 4, 36, and 79, and its deposition is coupled mainly to transcription. Until recently, histone methylation was considered to be irreversible, but the identification of histone demethylase enzymes has revealed that this modification can be dynamically regulated. In budding yeast, there are five proteins that contain the JmjC domain, a signature motif found in a large family of histone demethylases spanning many organisms. One JmjC-domain-containing protein in budding yeast, Jhd1, has recently been identified as being a histone demethylase that targets H3K36 modified in the di- and monomethyl state. Here, we identify a second JmjC-domain-containing histone demethylase, Rph1, which can specifically demethylate H3K36 tri- and dimethyl modification states. Surprisingly, Rph1 can remove H3K9 methylation, a histone modification not found in budding yeast chromatin. The capacity of Rph1 to demethylate H3K9 provides the first indication that S. cerevisiae may have once encoded an H3K9 methylation system and suggests that Rph1 is a functional vestige of this modification system.


Asunto(s)
Histonas/metabolismo , Lisina/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Histona Demetilasas , Metilación , Fenotipo , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Nat Struct Mol Biol ; 14(3): 243-5, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17310254

RESUMEN

Histone methylation is important in regulating chromatin structure and function. In budding yeast, methylation of histone H3 at Lys4 (H3-K4) is associated with active transcription and is enriched at the 5' regions of transcribed genes. Here we identify a novel budding yeast JmjC domain-containing H3-K4 demethylase, Jhd2p, that antagonizes the trimethyl modification state and contributes to regulation of telomeric silencing.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Oxidorreductasas O-Demetilantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Silenciador del Gen , Histona Demetilasas con Dominio de Jumonji , Saccharomyces cerevisiae/citología , Telómero/metabolismo
9.
Cell Cycle ; 4(12): 1826-33, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16294044

RESUMEN

In budding yeast, the meiosis-specific protein kinase Ime2 is required for normal meiotic progression. Current evidence suggests that Ime2 is functionally related to Cdc28, the major cyclin-dependent kinase in yeast that is essential for both cell cycle and meiosis. We have previously reported that a natural target of Ime2 activity is replication protein A (RPA), the cellular single-stranded DNA-binding protein that performs critical functions during DNA replication, repair and recombination. Ime2-dependent RPA phosphorylation first occurs early in meiosis and targets the middle subunit of the RPA heterotrimeric complex (Rfa2). We now demonstrate that Rfa2 serine 27 (S27) is required for Ime2-dependent Rfa2 phosphorylation in vivo. S27 is also required for Rfa2 phosphorylation in vitro catalyzed by immunoprecipitated Ime2. In addition, Ime2 mediates in vitro phosphorylation of a short peptide containing Rfa2 amino acids 23 through 29, thereby providing evidence that S27 itself is the phosphoacceptor. Phosphorylation site mapping supports this conclusion, as mass spectrometry analysis has revealed that at least three residues within Rfa2 amino acids 2 through 35 become phosphorylated specifically during meiosis. Although S27 is embedded in a motif that is recognized by several protein kinases, this sequence is not a typical target of cyclin-dependent kinases. Therefore, the mechanism underlying Ime2 substrate recognition could differ from that of Cdc28.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Catálisis , Proteínas de Unión al ADN/química , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular , Meiosis , Mapeo Peptídico , Fosfopéptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteína de Replicación A/química , Proteínas de Saccharomyces cerevisiae/química , Serina/genética , Factores de Tiempo , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA