Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003313

RESUMEN

Exertional heat illness (EHI) is an occupational health hazard for athletes and military personnel-characterised by the inability to thermoregulate during exercise. The ability to thermoregulate can be studied using a standardised heat tolerance test (HTT) developed by The Institute of Naval Medicine. In this study, we investigated whole blood gene expression (at baseline, 2 h post-HTT and 24 h post-HTT) in male subjects with either a history of EHI or known susceptibility to malignant hyperthermia (MHS): a pharmacogenetic condition with similar clinical phenotype. Compared to healthy controls at baseline, 291 genes were differentially expressed in the EHI cohort, with functional enrichment in inflammatory response genes (up to a four-fold increase). In contrast, the MHS cohort featured 1019 differentially expressed genes with significant down-regulation of genes associated with oxidative phosphorylation (OXPHOS). A number of differentially expressed genes in the inflammation and OXPHOS pathways overlapped between the EHI and MHS subjects, indicating a common underlying pathophysiology. Transcriptome profiles between subjects who passed and failed the HTT (based on whether they achieved a plateau in core temperature or not, respectively) were not discernable at baseline, and HTT was shown to elevate inflammatory response gene expression across all clinical phenotypes.


Asunto(s)
Trastornos de Estrés por Calor , Hipertermia Maligna , Humanos , Masculino , Transcriptoma , Trastornos de Estrés por Calor/genética , Ejercicio Físico/fisiología , Sobrevivientes
2.
Nat Commun ; 13(1): 3403, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697689

RESUMEN

Exertional heat illness (EHI) and malignant hyperthermia (MH) are life threatening conditions associated with muscle breakdown in the setting of triggering factors including volatile anesthetics, exercise, and high environmental temperature. To identify new genetic variants that predispose to EHI and/or MH, we performed genomic sequencing on a cohort with EHI/MH and/or abnormal caffeine-halothane contracture test. In five individuals, we identified rare, pathogenic heterozygous variants in ASPH, a gene encoding junctin, a regulator of excitation-contraction coupling. We validated the pathogenicity of these variants using orthogonal pre-clinical models, CRISPR-edited C2C12 myotubes and transgenic zebrafish. In total, we demonstrate that ASPH variants represent a new cause of EHI and MH susceptibility.


Asunto(s)
Trastornos de Estrés por Calor , Hipertermia Maligna , Animales , Cafeína/farmacología , Proteínas de Unión al Calcio , Humanos , Hipertermia Maligna/genética , Proteínas de la Membrana , Oxigenasas de Función Mixta , Contracción Muscular , Fibras Musculares Esqueléticas , Proteínas Musculares , Pez Cebra/genética
3.
Nat Rev Clin Oncol ; 19(8): 551-561, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35739399

RESUMEN

Over the past decade, the development of 'simple' blood tests that enable cancer screening, diagnosis or monitoring and facilitate the design of personalized therapies without the need for invasive tumour biopsy sampling has been a core ambition in cancer research. Data emerging from ongoing biomarker development efforts indicate that multiple markers, used individually or as part of a multimodal panel, are required to enhance the sensitivity and specificity of assays for early stage cancer detection. The discovery of cancer-associated molecular alterations that are reflected in blood at multiple dimensions (genome, epigenome, transcriptome, proteome and metabolome) and integration of the resultant multi-omics data have the potential to uncover novel biomarkers as well as to further elucidate the underlying molecular pathways. Herein, we review key advances in multi-omics liquid biopsy approaches and introduce the 'nano-omics' paradigm: the development and utilization of nanotechnology tools for the enrichment and subsequent omics analysis of the blood-circulating cancerome.


Asunto(s)
Neoplasias , Proteoma , Biomarcadores/análisis , Genoma , Humanos , Metaboloma , Nanotecnología , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Transcriptoma
4.
Nanoscale Horiz ; 5(11): 1476-1486, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853302

RESUMEN

The spontaneous adsorption of biomolecules onto the surface of nanoparticles (NPs) in complex physiological biofluids has been widely investigated over the last decade. Characterisation of the protein composition of the 'biomolecule corona' has dominated research efforts, whereas other classes of biomolecules, such as nucleic acids, have received no interest. Scarce, speculative statements exist in the literature about the presence of nucleic acids in the biomolecule corona, with no previous studies attempting to describe the contribution of genomic content to the blood-derived NP corona. Herein, we provide the first experimental evidence of the interaction of circulating cell-free DNA (cfDNA) with lipid-based NPs upon their incubation with human plasma samples, obtained from healthy volunteers and ovarian carcinoma patients. Our results also demonstrate an increased amount of detectable cfDNA in patients with cancer. Proteomic analysis of the same biomolecule coronas revealed the presence of histone proteins, suggesting an indirect, nucleosome-mediated NP-cfDNA interaction. The finding of cfDNA as part of the NP corona, offers a previously unreported new scope regarding the chemical composition of the 'biomolecule corona' and opens up new possibilities for the potential exploitation of the biomolecule corona for the enrichment and analysis of blood-circulating nucleic acids.


Asunto(s)
Ácidos Nucleicos Libres de Células/química , Lípidos/química , Nanopartículas/química , Adsorción , Anciano , Anciano de 80 o más Años , Femenino , Histonas , Humanos , Persona de Mediana Edad , Neoplasias Ováricas , Plasma , Proteómica
5.
J Med Genet ; 57(8): 531-541, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32054689

RESUMEN

BACKGROUND: We aimed to identify rare (minor allele frequency ≤1%), potentially pathogenic non-synonymous variants in a well-characterised cohort with a clinical history of exertional heat illness (EHI) or exertional rhabdomyolysis (ER). The genetic link between malignant hyperthermia (MH) and EHI was investigated due to their phenotypic overlap. METHODS: The coding regions of 38 genes relating to skeletal muscle calcium homeostasis or exercise intolerance were sequenced in 64 patients (mostly military personnel) with a history of EHI, or ER and who were phenotyped using skeletal muscle in vitro contracture tests. We assessed the pathogenicity of variants using prevalence data, in silico analysis, phenotype and segregation evidence and by review of the literature. RESULTS: We found 51 non-polymorphic, potentially pathogenic variants in 20 genes in 38 patients. Our data indicate that RYR1 p.T3711M (previously shown to be likely pathogenic for MH susceptibility) and RYR1 p.I3253T are likely pathogenic for EHI. PYGM p.A193S was found in 3 patients with EHI, which is significantly greater than the control prevalence (p=0.000025). We report the second case of EHI in which a missense variant at CACNA1S p.R498 has been found. Combinations of rare variants in the same or different genes are implicated in EHI. CONCLUSION: We confirm a role of RYR1 in the heritability of EHI as well as ER but highlight the likely genetic heterogeneity of these complex conditions. We propose defects, or combinations of defects, in skeletal muscle calcium homeostasis, oxidative metabolism and membrane excitability are associated with EHI.


Asunto(s)
Canales de Calcio Tipo L/genética , Trastornos de Estrés por Calor/genética , Rabdomiólisis/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Señalización del Calcio/genética , Femenino , Predisposición Genética a la Enfermedad , Trastornos de Estrés por Calor/epidemiología , Trastornos de Estrés por Calor/patología , Homeostasis , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Rabdomiólisis/epidemiología , Rabdomiólisis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA