Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174709, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38997018

RESUMEN

Global change is affecting plant-insect interactions in agroecosystems and can have dramatic consequences on yields when causing non-targeted pest outbreaks and threatening the use of pest natural enemies for biocontrol. The vineyard agroecosystem is an interesting system to study multi-stress conditions: on the one hand, agricultural intensification comes with high inputs of copper-based fungicides and, on the other hand, temperatures are rising due to climate change. We investigated interactive and bottom-up effects of both temperature increase and copper-based fungicides exposure on the important Lepidopteran vineyard pest Lobesia botrana and its natural enemy, the oophagous parasitoid Trichogramma oleae. We exposed L. botrana larvae to three increasing copper sulfate concentrations under two fluctuating thermal regimes, one current and one future. Eggs produced by L. botrana were then exposed to T. oleae. Our results showed that the survival of L. botrana, was only reduced by the highest copper sulfate concentration and improved under the warmer regime. The development time of L. botrana was strongly reduced by the warmer regime but increased with increasing copper sulfate concentrations, whereas pupal mass was reduced by both thermal regime and copper sulfate. T. oleae F1 emergence rate was reduced and their development time increased by combined effects of the warmer regime and increasing copper sulfate concentrations. Size, longevity and fecundity of T. oleae F1 decreased with high copper sulfate concentrations. These effects on the moth pest and its natural enemy are probably the result of trade-offs between the survival and the development of L. botrana facing multi-stress conditions and implicate potential consequences for future biological pest control. Our study supplies valuable data on how the interaction between pests and biological control agents is affected by multi-stress conditions.


Asunto(s)
Cambio Climático , Mariposas Nocturnas , Control Biológico de Vectores , Avispas , Animales , Mariposas Nocturnas/fisiología , Avispas/fisiología , Avispas/efectos de los fármacos , Control Biológico de Vectores/métodos , Fungicidas Industriales/toxicidad , Fungicidas Industriales/farmacología , Sulfato de Cobre/toxicidad , Larva/efectos de los fármacos , Estrés Fisiológico
2.
Pest Manag Sci ; 80(9): 4790-4799, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38801156

RESUMEN

BACKGROUND: Bordeaux mixture is a copper-based fungicide commonly used in vineyards to prevent fungal and bacterial infections in grapevines. However, this fungicide may adversely affect the entomological component, including insect pests. Understanding the impacts of Bordeaux mixture on the vineyard pest Lobesia botrana is an increasing concern in the viticultural production. RESULTS: Bordeaux mixture had detrimental effects on the development and reproductive performance of L. botrana. Several physiological traits were adversely affected by copper-based fungicide exposure, including a decrease in larval survival and a delayed larval development to moth emergence, as well as a reduced reproductive performance through a decrease in female fecundity and fertility and male sperm quality. However, we did not detect any effect of Bordeaux mixture on the measured reproductive behaviors (mating success, pre-mating latency and mating duration). CONCLUSION: Ingestion by larvae of food contaminated with Bordeaux mixture had a negative effect on the reproductive performance of the pest L. botrana, which could affect its population dynamics in vineyards. Although this study highlighted collateral damage of Bordeaux mixture on L. botrana, the potential impact of copper-based fungicides on vineyard diversity, including natural predators is discussed and needs to be taken in consideration in integrated pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Cobre , Fungicidas Industriales , Larva , Lobesia botrana , Vitis , Animales , Femenino , Masculino , Cobre/toxicidad , Fungicidas Industriales/toxicidad , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Lobesia botrana/efectos de los fármacos , Lobesia botrana/crecimiento & desarrollo , Reproducción/efectos de los fármacos , Vitis/microbiología
3.
Sci Total Environ ; 919: 170861, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354792

RESUMEN

Tropospheric ozone (O3) is likely to affect the chemical signal emitted by flowers to attract their pollinators through its effects on the emission of volatile organic compounds (VOCs) and its high reactivity with these compounds in the atmosphere. We investigated these possible effects using a plant-pollinator interaction where the VOCs responsible for pollinator attraction are known and which is commonly exposed to high O3 concentration episodes: the Mediterranean fig tree (Ficus carica) and its unique pollinator, the fig wasp (Blastophaga psenes). In controlled conditions, we exposed fig trees bearing receptive figs to a high-O3 episode (5 h) of 200 ppb and analyzed VOC emission. In addition, we investigated the chemical reactions occurring in the atmosphere between O3 and pollinator-attractive VOCs using real-time monitoring. Finally, we tested the response of fig wasps to the chemical signal when exposed to increasing O3 mixing ratios (0, 40, 80, 120 and 200 ppb). The exposure of the fig tree to high O3 levels induced a significant decrease in leaf stomatal conductance, a limited change in the emission by receptive figs of VOCs not involved in pollinator attraction, but a major change in the relative abundances of the compounds among pollinator-attractive VOCs in O3-enriched atmosphere. Fig VOCs reacted with O3 in the atmosphere even at the lowest level tested (40 ppb) and the resulting changes in VOC composition significantly disrupted the attraction of the specific pollinator. These results strongly suggest that current O3 episodes are probably already affecting the interaction between the fig tree and its specific pollinator.


Asunto(s)
Ficus , Ozono , Compuestos Orgánicos Volátiles , Avispas , Animales , Árboles , Polinización/fisiología , Avispas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA