Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Calcif Tissue Int ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276238

RESUMEN

We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein ß2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.

2.
Ecol Evol Physiol ; 97(4): 191-208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39270325

RESUMEN

AbstractMuscle-tendon unit (MTU) morphology and physiology are likely major determinants of locomotor performance and therefore Darwinian fitness. However, the relationships between underlying traits, performance, and fitness are complicated by phenomena such as coadaptation, multiple solutions, and trade-offs. Here, we leverage a long-running artificial selection experiment in which mice have been bred for high levels of voluntary running to explore MTU adaptation, as well as the role of coadaptation, multiple solutions, and trade-offs, in the evolution of endurance running. We compared the morphological and contractile properties of the triceps surae complex, a major locomotor MTU, in four replicate selected lines to those of the triceps surae complex in four replicate control lines. All selected lines have lighter and shorter muscles, longer tendons, and faster muscle twitch times than all control lines. Absolute and normalized maximum shortening velocities and contractile endurance vary across selected lines. Selected lines have similar or lower absolute velocities and higher endurance than control lines. However, normalized shortening velocities are both higher and lower in selected lines than in control lines. These findings potentially show an interesting coadaptation between muscle and tendon morphology and muscle physiology, highlight multiple solutions for increasing endurance running performance, demonstrate that a trade-off between muscle speed and endurance can arise in response to selection, and suggest that a novel physiology may sometimes allow this trade-off to be circumvented.


Asunto(s)
Adaptación Fisiológica , Músculo Esquelético , Resistencia Física , Carrera , Tendones , Animales , Ratones , Carrera/fisiología , Tendones/fisiología , Resistencia Física/genética , Resistencia Física/fisiología , Músculo Esquelético/fisiología , Adaptación Fisiológica/fisiología , Evolución Biológica , Masculino , Femenino , Contracción Muscular/fisiología
3.
J Exp Biol ; 227(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39119628

RESUMEN

Selection experiments play an increasingly important role in comparative and evolutionary physiology. However, selection experiments can be limited by relatively low statistical power, in part because replicate line is the experimental unit for analyses of direct or correlated responses (rather than number of individuals measured). One way to increase the ability to detect correlated responses is through a meta-analysis of studies for a given trait across multiple generations. To demonstrate this, we applied meta-analytic techniques to two traits (body mass and heart ventricle mass, with body mass as a covariate) from a long-term artificial selection experiment for high voluntary wheel-running behavior. In this experiment, all four replicate High Runner (HR) lines reached apparent selection limits around generations 17-27, running approximately 2.5- to 3-fold more revolutions per day than the four non-selected Control (C) lines. Although both traits would also be expected to change in HR lines (relative heart size expected to increase, expected direction for body mass is less clear), their statistical significance has varied, despite repeated measurements. We compiled information from 33 unique studies and calculated a measure of effect size (Pearson's R). Our results indicate that, despite a lack of statistical significance in most generations, HR mice have evolved larger hearts and smaller bodies relative to controls. Moreover, plateaus in effect sizes for both traits coincide with the generational range during which the selection limit for wheel-running behavior was reached. Finally, since reaching the selection limit, absolute effect sizes for body mass and heart ventricle mass have become smaller (i.e. closer to 0).


Asunto(s)
Corazón , Selección Genética , Animales , Ratones/fisiología , Peso Corporal/genética , Corazón/fisiología , Corazón/anatomía & histología , Ventrículos Cardíacos/anatomía & histología , Tamaño de los Órganos/genética , Condicionamiento Físico Animal/fisiología , Carrera/fisiología
4.
PLoS One ; 19(8): e0306397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39088483

RESUMEN

In various organisms, sequencing of selectively bred lines at apparent selection limits has demonstrated that genetic variation can remain at many loci, implying that evolution at the genetic level may continue even if the population mean phenotype remains constant. We compared selection signatures at generations 22 and 61 of the "High Runner" mouse experiment, which includes 4 replicate lines bred for voluntary wheel-running behavior (HR) and 4 non-selected control (C) lines. Previously, we reported multiple regions of differentiation between the HR and C lines, based on whole-genome sequence data for 10 mice from each line at generation 61, which was >31 generations after selection limits had been reached in all HR lines. Here, we analyzed pooled sequencing data from ~20 mice for each of the 8 lines at generation 22, around when HR lines were reaching limits. Differentiation analyses of allele frequencies at ~4.4 million SNP loci used the regularized T-test and detected 258 differentiated regions with FDR = 0.01. Comparable analyses involving pooling generation 61 individual mouse genotypes into allele frequencies by line produced only 11 such regions, with almost no overlap among the largest and most statistically significant peaks between the two generations. These results implicate a sort of "genetic churn" that continues at loci relevant for running. Simulations indicate that loss of statistical power due to random genetic drift and sampling error are insufficient to explain the differences in selection signatures. The 13 differentiated regions at generation 22 with strict culling measures include 79 genes related to a wide variety of functions. Gene ontology identified pathways related to olfaction and vomeronasal pathways as being overrepresented, consistent with generation 61 analyses, despite those specific regions differing between generations. Genes Dspp and Rbm24 are also identified as potentially explaining known bone and skeletal muscle differences, respectively, between the linetypes.


Asunto(s)
Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Ratones , Frecuencia de los Genes , Carrera , Masculino , Fenotipo , Genotipo , Femenino , Conducta Animal/fisiología , Selección Artificial/genética
5.
Integr Comp Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982258

RESUMEN

Trade-offs resulting from the high demand of offspring production are a central focus of many subdisciplines within the field of biology. Yet, despite the historical and current interest on this topic, large gaps in our understanding of whole-organism trade-offs that occur in reproducing individuals remain, particularly as it relates to the nuances associated with female reproduction. This volume of Integrative and Comparative Biology (ICB) contains a series of papers that focus on reviewing trade-offs from the female-centered perspective of biology (i.e., a perspective that places female reproductive biology at the center of the topic being investigated or discussed). These papers represent some of the work showcased during our symposium held at the 2024 meeting of the Society for Integrative and Comparative Biology (SICB) in Seattle, Washington. In this roundtable discussion, we use a question-and-answer format to capture the diverse perspectives and voices involved in our symposium. We hope that the dialogue featured in this discussion will be used to motivate researchers interested in understanding trade-offs in reproducing females and provide guidance on future research endeavors.

6.
Ecol Evol Physiol ; 97(2): 97-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728689

RESUMEN

AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.


Asunto(s)
Selección Genética , Animales , Ratones , Evolución Biológica , Carrera/fisiología , Carrera/psicología , Conducta Animal/fisiología , Masculino , Femenino , Actividad Motora/fisiología , Condicionamiento Físico Animal/fisiología
7.
Physiol Behav ; 282: 114582, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38750805

RESUMEN

Food restriction can have profound effects on various aspects of behavior, physiology, and morphology. Such effects might be amplified in animals that are highly active, given that physical activity can represent a substantial fraction of the total daily energy budget. More specifically, some effects of food restriction could be associated with intrinsic, genetically based differences in the propensity or ability to perform physical activity. To address this possibility, we studied the effects of food restriction in four replicate lines of High Runner (HR) mice that have been selectively bred for high levels of voluntary wheel running. We hypothesized that HR mice would respond differently than mice from four non-selected Control (C) lines. Healthy adult females from generation 65 were housed individually with wheels and provided access to food and water ad libitum for experimental days 1-19 (Phase 1), which allowed mice to attain a plateau in daily running distances. Ad libitum food intake of each mouse was measured on days 20-22 (Phase 2). After this, each mouse experienced a 20 % food restriction for 7 days (days 24-30; Phase 3), and then a 40 % food restriction for 7 additional days (days 31-37; Phase 4). Mice were weighed on experimental days 1, 8, 9, 15, 20, and 23-37 and wheel-running activity was recorded continuously, in 1-minute bins, during the entire experiment. Repeated-measures ANOVA of daily wheel-running distance during Phases 2-4 indicated that HR mice always ran much more than C, with values being 3.29-fold higher during the ad libitum feeding trial, 3.58-fold higher with -20 % food, and 3.06-fold higher with -40 % food. Seven days of food restriction at -20 % did not significantly reduce wheel-running distance of either HR (-5.8 %, P = 0.0773) or C mice (-13.3 %, P = 0.2122). With 40 % restriction, HR mice showed a further decrease in daily wheel-running distance (P = 0.0797 vs. values at 20 % restriction), whereas C mice did not (P = 0.4068 vs. values at 20 % restriction) and recovered to levels similar to those on ad libitum food (P = 0.3634). For HR mice, daily running distances averaged 11.4 % lower at -40 % food versus baseline values (P = 0.0086), whereas for C mice no statistical difference existed (-4.8 %, P = 0.7004). Repeated-measures ANOVA of body mass during Phases 2-4 indicated a highly significant effect of food restriction (P = 0.0001), but no significant effect of linetype (P = 0.1764) and no interaction (P = 0.8524). Both HR and C mice had a significant reduction in body mass only when food rations were reduced by 40 % relative to ad libitum feeding, and even then the reductions averaged only -0.60 g for HR mice (-2.6 %) and -0.49 g (-2.0 %) for C mice. Overall, our results indicate a surprising insensitivity of body mass to food restriction in both high-activity (HR) and ordinary (C) mice, and also insensitivity of wheel running in the C lines of mice, thus calling for studies of compensatory mechanisms that allow this insensitivity.


Asunto(s)
Peso Corporal , Ingestión de Alimentos , Actividad Motora , Carrera , Animales , Ratones , Femenino , Peso Corporal/fisiología , Peso Corporal/genética , Ingestión de Alimentos/fisiología , Ingestión de Alimentos/genética , Actividad Motora/fisiología , Carrera/fisiología , Privación de Alimentos/fisiología , Selección Artificial , Análisis de Varianza
8.
J Anat ; 244(6): 1015-1029, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38303650

RESUMEN

The nutrient artery provides ~50%-70% of the total blood volume to long bones in mammals. Studying the functional characteristics of this artery in vivo can be difficult and expensive, so most researchers have measured the nutrient foramen, an opening on the outer surface of the bone that served as the entry point for the nutrient artery during development and bone ossification. Others have measured the nutrient canal (i.e., the passage which the nutrient artery once occupied), given that the external dimensions of the foramen do not necessarily remain uniform from the periosteal surface to the medullary cavity. The nutrient canal, as an indicator of blood flow to long bones, has been proposed to provide a link to studying organismal activity (e.g., locomotor behavior) from skeletal morphology. However, although external loading from movement and activity causes skeletal remodeling, it is unclear whether it affects the size or configuration of nutrient canals. To investigate whether nutrient canals can exhibit phenotypic plasticity in response to physical activity, we studied a mouse model in which four replicate high runner (HR) lines have been selectively bred for high voluntary wheel-running behavior. The selection criterion is the average number of wheel revolutions on days 5 and 6 of a 6-day period of wheel access as young adults (~6-8 weeks old). An additional four lines are bred without selection to serve as controls (C). For this study, 100 female mice (half HR, half C) from generation 57 were split into an active group housed with wheels and a sedentary group housed without wheels for 12 weeks starting at ~24 days of age. Femurs were collected, soft tissues were removed, and femora were micro-computed tomography scanned at a resolution of 12 µm. We then imported these scans into AMIRA and created 3D models of femoral nutrient canals. We tested for evolved differences in various nutrient canal traits between HR and C mice, plastic changes resulting from chronic exercise, and the selection history-by-exercise interaction. We found few differences between the nutrient canals of HR versus C mice, or between the active and sedentary groups. We did find an interaction between selection history and voluntary exercise for the total number of nutrient canals per femur, in which wheel access increased the number of canals in C mice but decreased it in HR mice. Our results do not match those from an earlier study, conducted at generation 11, which was prior to the HR lines reaching selection limits for wheel running. The previous study found that mice from the HR lines had significantly larger total canal cross-sectional areas compared to those from C lines. However, this discrepancy is consistent with studies of other skeletal traits, which have found differences between HR and C mice to be somewhat inconsistent across generations, including the loss of some apparent adaptations with continued selective breeding after reaching a selection limit for wheel-running behavior.


Asunto(s)
Fémur , Animales , Fémur/anatomía & histología , Fémur/fisiología , Ratones , Selección Artificial , Femenino , Carrera/fisiología , Condicionamiento Físico Animal/fisiología , Masculino , Actividad Motora/fisiología
9.
R Soc Open Sci ; 11(1): 231532, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38234440

RESUMEN

A putative male advantage in wayfinding ability is the most widely documented sex difference in human cognition and has also been observed in other animals. The common interpretation, the sex-specific adaptation hypothesis, posits that this male advantage evolved as an adaptive response to sex differences in home range size. A previous study a decade ago tested this hypothesis by comparing sex differences in home range size and spatial ability among 11 species and found no relationship. However, the study was limited by the small sample size, the lack of species with a larger female home range and the lack of non-Western human data. The present study represents an update that addresses all of these limitations, including data from 10 more species and from human subsistence cultures. Consistent with the previous result, we found little evidence that sex differences in spatial navigation and home range size are related. We conclude that sex differences in spatial ability are more likely due to experiential factors and/or unselected biological side effects, rather than functional outcomes of natural selection.

10.
Biol Open ; 12(11)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37909760

RESUMEN

For terrestrial locomotion of animals and machines, physical characteristics of the substrate can strongly impact kinematics and performance. Snakes are an especially interesting system for studying substrate effects because their gait depends more on the environment than on their speed. We tested sidewinder rattlesnakes (Crotalus cerastes) on two surfaces: sand collected from their natural environment and vinyl tile flooring, an artificial surface often used to elicit sidewinding in laboratory settings. Of ten kinematic variables examined, two differed significantly between the substrates: the body's waveform had an average of ∼17% longer wavelength on vinyl flooring (measured in body lengths), and snakes lifted their bodies an average of ∼40% higher on sand (measured in body lengths). Sidewinding may also differ among substrates in ways we did not measure (e.g. ground reaction forces and energetics), leaving open clear directions for future study.


Asunto(s)
Crotalus , Arena , Animales , Fenómenos Biomecánicos , Ambiente
11.
Behav Processes ; 213: 104973, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38013137

RESUMEN

Locomotor play is vigorous and seemingly purposeless behavior, commonly observed in young mammals. It can be costly in terms of energy expenditure, increased injury risk, and predator exposure. The main hypothesized benefit of locomotor play is enhancement of neuromuscular development, with effects persisting into adulthood. We hypothesized that levels of locomotor play would have evolved as a correlated response to artificial selection for increased voluntary exercise behavior. We studied mice from 4 replicate lines bred for voluntary wheel running (High Runner or HR) at 6-8 weeks of age and four non-selected Control (C) lines. Mice were weaned at 21 days of age and play behavior was observed for generations 20 (22-24 days old), 68 (22-23 days old), and 93 (15 days old). We quantified locomotor play as (1) rapid, horizontally directed jerk-run sequences and (2) vertical "bouncing." We used focal sampling to continuously record behavior in cages containing 4-6 individuals during the first 2-3 h of the dark cycle. Observations were significantly repeatable between observers and days. A two-way, mixed-model simultaneously tested effects of linetype (HR vs. C), sex, and their interaction. Contrary to our hypothesis, HR and C lines did not differ in any generation, nor did we find sex differences. However, differences among the replicate HR lines and among the replicate C lines were detected, and may be attributed to the effects of random genetic drift (and possibly founder effects). Thus, play behavior did evolve in this selection experiment, but not as a correlated response to selection for voluntary exercise.


Asunto(s)
Actividad Motora , Selección Artificial , Ratones , Femenino , Animales , Masculino , Actividad Motora/fisiología , Flujo Genético , Destete , Caracteres Sexuales , Selección Genética , Mamíferos
12.
Sports Med Health Sci ; 5(3): 205-212, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753423

RESUMEN

Physical activity engagement results in a variety of positive health outcomes, including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart. The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling. Adult females (average age 55 days) from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane, then echocardiographic images were collected and analyzed for structural and functional differences. High Runner mice in general had lower ejection fractions compared to control mice lines (2-tailed p â€‹= â€‹0.023 6) and tended to have thicker walls of the anterior portion of the left ventricle (p â€‹= â€‹0.065). However, a subset of the High Runner individuals, termed mini-muscle mice, had greater ejection fraction (p â€‹= â€‹0.000 6), fractional shortening percentage (p â€‹< â€‹0.000 1), and ventricular mass at dissection (p â€‹< â€‹0.002 7 with body mass as a covariate) compared to non-mini muscle mice. Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics, although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics, which in conjunction with their previously described peripheral aerobic enhancements (e.g., increased capillarity) would partially account for their increased V˙ O2max.

13.
Brain Behav Evol ; 98(5): 245-263, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37604130

RESUMEN

Uncovering relationships between neuroanatomy, behavior, and evolution are important for understanding the factors that control brain function. Voluntary exercise is one key behavior that both affects, and may be affected by, neuroanatomical variation. Moreover, recent studies suggest an important role for physical activity in brain evolution. We used a unique and ongoing artificial selection model in which mice are bred for high voluntary wheel-running behavior, yielding four replicate lines of high runner (HR) mice that run ∼3-fold more revolutions per day than four replicate nonselected control (C) lines. Previous studies reported that, with body mass as a covariate, HR mice had heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We sampled mice from generation 66 and used high-resolution microscopy to test the hypothesis that HR mice have greater volumes and/or cell densities in nine key regions from either the midbrain or limbic system. In addition, half of the mice were given 10 weeks of wheel access from weaning, and we predicted that chronic exercise would increase the volumes of the examined brain regions via phenotypic plasticity. We replicated findings that both selective breeding and wheel access increased total brain mass, with no significant interaction between the two factors. In HR compared to C mice, adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus (HPC) were significantly larger, and the whole midbrain tended to be larger, with no effect of wheel access nor any interactions. Linetype and wheel access had an interactive effect on the volume of the periaqueductal gray (PAG), such that wheel access increased PAG volume in C mice but decreased volume in HR mice. Neither linetype nor wheel access affected volumes of the substantia nigra, ventral tegmental area, nucleus accumbens, ventral pallidum (VP), or basolateral amygdala. We found no main effect of either linetype or wheel access on neuronal densities (numbers of cells per unit area) for any of the regions examined. Taken together, our results suggest that the increased exercise phenotype of HR mice is related to increased RN and hippocampal volumes, but that chronic exercise alone does not produce such phenotypes.


Asunto(s)
Núcleo Rojo , Selección Artificial , Ratones , Animales , Área Tegmental Ventral , Mesencéfalo , Hipocampo
14.
J Exp Biol ; 226(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439323

RESUMEN

In general, sustained high rates of physical activity require a high maximal aerobic capacity (V̇O2,max), which may also necessitate a high basal aerobic metabolism (BMR), given that the two metabolic states are linked via shared organ systems, cellular properties and metabolic pathways. We tested the hypotheses that (a) selective breeding for high voluntary exercise in mice would elevate both V̇O2,max and BMR, and (b) these increases are accompanied by increases in the size of some internal organs (ventricle, triceps surae muscle, liver, kidney, spleen, lung, brain). We measured 72 females from generations 88 and 96 of an ongoing artificial selection experiment comprising four replicate High Runner (HR) lines bred for voluntary daily wheel-running distance and four non-selected control lines. With body mass as a covariate, HR lines as a group had significantly higher V̇O2,max (+13.6%, P<0.0001), consistent with previous studies, but BMR did not significantly differ between HR and control lines (+6.5%, P=0.181). Additionally, HR mice did not statistically differ from control mice for whole-body lean or fat mass, or for the mass of any organ collected (with body mass as a covariate). Finally, mass-independent V̇O2,max and BMR were uncorrelated (r=0.073, P=0.552) and the only statistically significant correlation with an organ mass was for V̇O2,max and ventricle mass (r=0.285, P=0.015). Overall, our results indicate that selection for a behavioral trait can yield large changes in behavior without proportional modifications to underlying morphological or physiological traits.


Asunto(s)
Metabolismo Basal , Selección Artificial , Femenino , Ratones , Animales , Músculo Esquelético/fisiología , Fenotipo , Ventrículos Cardíacos
15.
Genes Brain Behav ; 22(6): e12858, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37519068

RESUMEN

Selective breeding has been utilized to study the genetic basis of exercise behavior, but research suggests that epigenetic mechanisms, such as DNA methylation, also contribute to this behavior. In a previous study, we demonstrated that the brains of mice from a genetically selected high runner (HR) line have sex-specific changes in DNA methylation patterns in genes known to be genomically imprinted compared to those from a non-selected control (C) line. Through cross-fostering, we also found that maternal upbringing can modify the DNA methylation patterns of additional genes. Here, we identify an additional set of genes in which DNA methylation patterns and gene expression may be altered by selection for increased wheel-running activity and maternal upbringing. We performed bisulfite sequencing and gene expression assays of 14 genes in the brain and found alterations in DNA methylation and gene expression for Bdnf, Pde4d and Grin2b. Decreases in Bdnf methylation correlated with significant increases in Bdnf gene expression in the hippocampus of HR compared to C mice. Cross-fostering also influenced the DNA methylation patterns for Pde4d in the cortex and Grin2b in the hippocampus, with associated changes in gene expression. We also found that the DNA methylation patterns for Atrx and Oxtr in the cortex and Atrx and Bdnf in the hippocampus were further modified by sex. Together with our previous study, these results suggest that DNA methylation and the resulting change in gene expression may interact with early-life influences to shape adult exercise behavior.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Metilación de ADN , Masculino , Femenino , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Selección Artificial , Epigénesis Genética , Encéfalo/metabolismo , Hipocampo/metabolismo
16.
Mol Metab ; 71: 101707, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933618

RESUMEN

BACKGROUND/PURPOSE: Litter size is a biological variable that strongly influences adult physiology in rodents. Despite evidence from previous decades and recent studies highlighting its major impact on metabolism, information about litter size is currently underreported in the scientific literature. Here, we urge that this important biological variable should be explicitly stated in research articles. RESULTS/CONCLUSION: Below, we briefly describe the scientific evidence supporting the impact of litter size on adult physiology and outline a series of recommendations and guidelines to be implemented by investigators, funding agencies, editors in scientific journals, and animal suppliers to fill this important gap.


Asunto(s)
Roedores , Embarazo , Animales , Femenino , Tamaño de la Camada/fisiología
17.
J Exp Biol ; 226(4)2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36728594

RESUMEN

We compared the fecal microbial community composition and diversity of four replicate lines of mice selectively bred for high wheel-running activity over 81 generations (HR lines) and four non-selected control lines. We performed 16S rRNA gene sequencing on fecal samples taken 24 h after weaning, identifying a total of 2074 bacterial operational taxonomic units. HR and control mice did not significantly differ for measures of alpha diversity, but HR mice had a higher relative abundance of the family Clostridiaceae. These results differ from a study of rats, where a line bred for high forced-treadmill endurance and that also ran more on wheels had lower relative abundance of Clostridiaceae, as compared with a line bred for low endurance that ran less on wheels. Within the HR and control groups, replicate lines had unique microbiomes based on unweighted UniFrac beta diversity, indicating random genetic drift and/or multiple adaptive responses to selection.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Ratas , Animales , ARN Ribosómico 16S , Prueba de Esfuerzo , Modelos Animales de Enfermedad , Estado Nutricional
18.
J Exp Biol ; 226(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700411

RESUMEN

The standard paradigm of organismal biology views lower-level traits (e.g. aspects of physiology) as determining organismal performance ability (e.g. maximal sprint speed), which in turn constrains behavior (e.g. social interactions). However, few studies have simultaneously examined all three levels of organization. We used focal observations to record movement behaviors and push-up displays in the field for adult male Sceloporus occidentalis lizards during the breeding season. We then captured animals, measured aspects of their physiology, morphology and performance, and counted ectoparasites and endoparasites as potential predictors of sprint speed and maximal oxygen consumption (V̇O2,max). Field behaviors were statistically repeatable, but not strongly so. Sprint speed and V̇O2,max were repeatable using residuals from regressions on body mass (speed: r=0.70; V̇O2,max: r=0.88). Both calf [standardized partial regression (path) coefficient B=0.53] and thigh [B=-0.37] muscle mass (as residuals from regressions on body mass) were significant predictors of sprint speed; hemoglobin concentration (B=0.42) was a predictor of V̇O2,max. In turn, V̇O2,max predicted the maximum number of four-legged push-ups per bout (B=0.39). In path analysis, log likelihood ratio tests indicated no direct paths from lower-level traits to behavior, supporting the idea that morphology, in the broad sense, only affects behavior indirectly through measures of performance. Our results show that inter-individual variation in field behaviors can be related to performance ability, which in turn reflect differences in morphology and physiology, although not parasite load. Given the low repeatability of field behaviors, some of the relationships between behavior and performance may be stronger than suggested by our results.


Asunto(s)
Lagartos , Locomoción , Consumo de Oxígeno , Animales , Masculino , Lagartos/fisiología
19.
Physiol Biochem Zool ; 96(1): 1-16, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36626844

RESUMEN

AbstractKrogh's principle states, "For such a large number of problems there will be some animal of choice, or a few such animals, on which it can be most conveniently studied." The downside of picking a question first and then finding an ideal organism on which to study it is that it will inevitably leave many organisms neglected. Here, we promote the inverse Krogh principle: all organisms are worthy of study. The inverse Krogh principle and the Krogh principle are not opposites. Rather, the inverse Krogh principle emphasizes a different starting point for research: start with a biological unit, such as an organism, clade, or specific organism trait, then seek or create tractable research questions. Even the hardest-to-study species have research questions that can be asked of them: Where does it fall within the tree of life? What resources does it need to survive and reproduce? How does it differ from close relatives? Does it have unique adaptations? The Krogh and inverse Krogh approaches are complementary, and many research programs naturally include both. Other considerations for picking a study species include extreme species, species informative for phylogenetic analyses, and the creation of models when a suitable species does not exist. The inverse Krogh principle also has pitfalls. A scientist that picks the organism first might choose a research question not really suited to the organism, and funding agencies rarely fund organism-centered grant proposals. The inverse Krogh principle does not call for all organisms to receive the same amount of research attention. As knowledge continues to accumulate, some organisms-models-will inevitably have more known about them than others. Rather, it urges a broader search across organismal diversity to find sources of inspiration for research questions and the motivation needed to pursue them.


Asunto(s)
Adaptación Fisiológica , Animales , Filogenia , Fenotipo
20.
J Dev Orig Health Dis ; 14(2): 249-260, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193024

RESUMEN

Fructose (C6H12O6) is acutely obesogenic and is a risk factor for hypertension, cardiovascular disease, and nonalcoholic fatty liver disease. However, the possible long-lasting effects of early-life fructose consumption have not been studied. We tested for effects of early-life fructose and/or wheel access (voluntary exercise) in a line of selectively bred High Runner (HR) mice and a non-selected Control (C) line. Exposures began at weaning and continued for 3 weeks to sexual maturity, followed by a 23-week "washout" period (equivalent to ∼17 human years). Fructose increased total caloric intake, body mass, and body fat during juvenile exposure, but had no effect on juvenile wheel running and no important lasting effects on adult physical activity or body weight/composition. Interestingly, adult maximal aerobic capacity (VO2max) was reduced in mice that had early-life fructose and wheel access. Consistent with previous studies, early-life exercise promoted adult wheel running. In a 3-way interaction, C mice that had early-life fructose and no wheel access gained body mass in response to 2 weeks of adult wheel access, while all other groups lost mass. Overall, we found some long-lasting positive effects of early-life exercise, but minimal effects of early-life fructose, regardless of the mouse line.


Asunto(s)
Actividad Motora , Condicionamiento Físico Animal , Humanos , Ratones , Animales , Actividad Motora/fisiología , Composición Corporal/fisiología , Tejido Adiposo , Ingestión de Energía , Condicionamiento Físico Animal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA