Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Microbiol ; 8(10): 1920-1934, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524802

RESUMEN

Lakes are heterogeneous ecosystems inhabited by a rich microbiome whose genomic diversity is poorly defined. We present a continental-scale study of metagenomes representing 6.5 million km2 of the most lake-rich landscape on Earth. Analysis of 308 Canadian lakes resulted in a metagenome-assembled genome (MAG) catalogue of 1,008 mostly novel bacterial genomospecies. Lake trophic state was a leading driver of taxonomic and functional diversity among MAG assemblages, reflecting the responses of communities profiled by 16S rRNA amplicons and gene-centric metagenomics. Coupling the MAG catalogue with watershed geomatics revealed terrestrial influences of soils and land use on assemblages. Agriculture and human population density were drivers of turnover, indicating detectable anthropogenic imprints on lake bacteria at the continental scale. The sensitivity of bacterial assemblages to human impact reinforces lakes as sentinels of environmental change. Overall, the LakePulse MAG catalogue greatly expands the freshwater genomic landscape, advancing an integrative view of diversity across Earth's microbiomes.


Asunto(s)
Lagos , Microbiota , Humanos , Lagos/microbiología , ARN Ribosómico 16S/genética , Canadá , Bacterias/genética , Microbiota/genética
3.
Water Res ; 231: 119596, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36653256

RESUMEN

Lakes are sentinels of environmental changes within their watersheds including those induced by a changing climate and anthropogenic activities. In particular, contamination originating from point or non-point sources (NPS) within watersheds might be reflected in changes in the bacterial composition of lake water. We assessed the abundance of potentially pathogenic bacteria (PPB) sampled in 413 lakes within 8 southern Canadian ecozones that represent a wide diversity of lakes and watershed land use. The study objectives were (1) to explore the diversity of PPB; (2) to build a fecal multi-indicator from a cluster of co-occurring PPB; and (3) to predict the fecal multi-indicator over thousands of lakes. We identified bacterial taxa based on 16S rRNA amplicon sequencing and clustered 33 PPB matching taxa in the Canadian ePATHogen database using a Sørensen dissimilarity index on binary data across the sampled lakes. One cluster contained Erysipelothrix, Desulfovibrio, Bacteroides, Vibrio and Acholeplasma and was related to the NPS fraction of agriculture and pasture within the watershed as its main driver and thus it was determined as the fecal multi-indicator. We subsequently developed a fecal multi-indicator predictive model across 200 212 southern Canadian lakes which explained 55.1% of the deviance. Mapping the predictions showed higher fecal multi-indicator abundances in the Prairies and Boreal Plains compared to the other ecozones. These results represent the first attempt to map a potential fecal multi-indicator at the continental scale, which may be further improved in the future. Lastly, the study demonstrates the capacity of a multi-disciplinary approach leveraging both datasets derived from remote sensing and DNA sequencing to provide mapping information for public health governmental policies.


Asunto(s)
Pradera , Lagos , Lagos/microbiología , ARN Ribosómico 16S/genética , Monitoreo del Ambiente/métodos , Canadá , Bacterias/genética , Heces/microbiología , Agricultura
4.
mSystems ; 7(4): e0031622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35730947

RESUMEN

Protists play key roles in aquatic food webs as primary producers, predators, nutrient recyclers, and symbionts. However, a comprehensive view of protist diversity in freshwaters has been challenged by the immense environmental heterogeneity among lakes worldwide. We assessed protist diversity in the surface waters of 366 freshwater lakes across a north temperate to subarctic range covering nearly 8.4 million km2 of Canada. Sampled lakes represented broad gradients in size, trophic state, and watershed land use. Hypereutrophic lakes contained the least diverse and most distinct protist communities relative to nutrient-poor lakes. Greater taxonomic variation among eutrophic lakes was mainly a product of heterotroph and mixotroph diversity, whereas phototroph assemblages were more similar under high-nutrient conditions. Overall, local physicochemical factors, particularly ion and nutrient concentrations, elicited the strongest responses in community structure, far outweighing the effects of geographic gradients. Despite their contrasting distribution patterns, obligate phototroph and heterotroph turnover was predicted by an overlapping set of environmental factors, while the metabolic plasticity of mixotrophs may have made them less predictable. Notably, protist diversity was associated with variation in watershed soil pH and agricultural crop coverage, pointing to human impact on the land-water interface that has not been previously identified in studies on smaller scales. Our study exposes the importance of both within-lake and external watershed characteristics in explaining protist diversity and biogeography, critical information for further developing an understanding of how freshwater lakes and their watersheds are impacted by anthropogenic stressors. IMPORTANCE Freshwater lakes are experiencing rapid changes under accelerated anthropogenic stress and a warming climate. Microorganisms underpin aquatic food webs, yet little is known about how freshwater microbial communities are responding to human impact. Here, we assessed the diversity of protists and their myriad ecological roles in lakes varying in size across watersheds experiencing a range of land use pressures by leveraging data from a continental-scale survey of Canadian lakes. We found evidence of human impact on protist assemblages through an association with lake trophic state and extending to agricultural activity and soil characteristics in the surrounding watershed. Furthermore, trophic state appeared to explain the distributions of phototrophic and heterotrophic protists in contrasting ways. Our findings highlight the vulnerability of lake ecosystems to increased land use and the importance of assessing terrestrial interfaces to elucidate freshwater ecosystem dynamics.


Asunto(s)
Ecosistema , Lagos , Humanos , Lagos/química , Canadá , Eucariontes/metabolismo , Suelo
5.
Harmful Algae ; 113: 102187, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35287928

RESUMEN

Accurately identifying the species present in an ecosystem is vital to lake managers and successful bioassessment programs. This is particularly important when monitoring cyanobacteria, as numerous taxa produce toxins and can have major negative impacts on aquatic ecosystems. Increasingly, DNA-based techniques such as metabarcoding are being used for measuring aquatic biodiversity, as they could accelerate processing time, decrease costs and reduce some of the biases associated with traditional light microscopy. Despite the continuing use of traditional microscopy and the growing use of DNA metabarcoding to identify cyanobacteria assemblages, methodological comparisons between the two approaches have rarely been reported from a wide suite of lake types. Here, we compare planktonic cyanobacteria assemblages generated by inverted light microscopy and DNA metabarcoding from a 379-lake dataset spanning a longitudinal and trophic gradient. We found moderate levels of congruence between methods at the broadest taxonomic levels (i.e., Order, RV=0.40, p < 0.0001). This comparison revealed distinct cyanobacteria communities from lakes of different trophic states, with Microcystis, Aphanizomenon and Dolichospermum dominating with both methods in eutrophic and hypereutrophic sites. This finding supports the use of either method when monitoring eutrophication in lake surface waters. The biggest difference between the two methods was the detection of picocyanobacteria, which are typically underestimated by light microscopy. This reveals that the communities generated by each method currently are complementary as opposed to identical and promotes a combined-method strategy when monitoring a range of trophic systems. For example, microscopy can provide measures of cyanobacteria biomass, which are critical data in managing lakes. Going forward, we believe that molecular genetic methods will be increasingly adopted as reference databases are routinely updated with more representative sequences and will improve as cyanobacteria taxonomy is resolved with the increase in available genetic information.


Asunto(s)
Cianobacterias , Lagos , Cianobacterias/genética , ADN , Código de Barras del ADN Taxonómico , Ecosistema , Lagos/microbiología , Microscopía
6.
Water Res ; 209: 117935, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34915335

RESUMEN

Eukaryotic pathogens including fungi and enteroparasites infect humans, animals and plants. As integrators of landscape catchment, lakes can reflect and record biological and geochemical events or anthropogenic changes and provide useful knowledge to formulate public health, food security and water policies to manage and prevent diseases. In this context, potentially pathogenic fungi and parasites were sampled using 18S rRNA gene amplicon sequencing in 382 lakes displaying a broad range of sizes and human impact on the watershed in 10 ecozones across Canada. Based on pathogen classifications from the ePATHogen database published by the Public Health Agency of Canada, we identified 23 health-relevant genera for human and animal hosts, including Cryptococcus and Cryptosporidium. Our study investigated the potential of remote sensing and geomatics to predict microbial contamination in a tele-epidemiological approach. We used boosted regression tree modeling to evaluate the probability of occurrence of the most common genera found in our dataset based on 10 satellite-derivable, geomatics and field survey variables which could be potential sources or transport mechanisms through the watershed or survival factors in the water. We found that southern ecozones that possess the highest agricultural and pasture activities tend to contain lakes with the largest number of potential pathogens including several fungi associated with plant diseases. Bio-optical factors, such as colored dissolved organic matter, were highly related to the occurrence of the genera, potentially by protecting against damage from ultraviolet light. Our results demonstrate the capability of tele-epidemiology to provide useful information to develop government policies for recreational and drinking water regulations as well as for food security.

7.
mSphere ; 5(6)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148818

RESUMEN

The reconstruction of ecological time series from lake sediment archives can retrace the environmental impact of human activities. Molecular genetic approaches in paleolimnology have provided unprecedented access to DNA time series, which record evidence of the microbial ecologies that underlaid historical lake ecosystems. Such studies often rely on single-gene surveys, and consequently, the full diversity of preserved microorganisms remains unexplored. In this study, we probed the diversity archived in contemporary and preindustrial sediments by comparative shotgun metagenomic analysis of surface water and sediment samples from three eastern Canadian lakes. In a strategy that was aimed at disentangling historical DNA from the indigenous sediment background, microbial preservation signals were captured by mapping sequence similarities between sediment metagenome reads and reference surface water metagenome assemblies. We detected preserved Cyanobacteria, diverse bacterioplankton, microeukaryotes, and viruses in sediment metagenomes. Among the preserved microorganisms were important groups never before reported in paleolimnological reconstructions, including bacteriophages (Caudovirales) and ubiquitous freshwater Betaproteobacteria (Polynucleobacter and Limnohabitans). In contrast, ultramicroscopic Actinobacteria ("Candidatus Nanopelagicales") and Alphaproteobacteria (Pelagibacterales) were apparently not well preserved in sediment metagenomes even though they were numerically dominant in surface water metagenomes. Overall, our study explored a novel application of whole-metagenome shotgun sequencing for discovering the DNA remains of a broad diversity of microorganisms preserved in lake sediments. The recovery of diverse microbial time series supports the taxonomic expansion of microbiome reconstructions and the development of novel microbial paleoindicators.IMPORTANCE Lakes are critical freshwater resources under mounting pressure from climate change and other anthropogenic stressors. The reconstruction of ecological time series from sediment archives with paleolimnological techniques has been shown to be an effective means of understanding how humans are modifying lake ecosystems over extended timescales. In this study, we combined shotgun DNA sequencing with a novel comparative analysis of surface water and sediment metagenomes to expose the diversity of microorganisms preserved in lake sediments. The detection of DNA from a broad diversity of preserved microbes serves to more fully reconstruct historical microbiomes and describe preimpact lake conditions.


Asunto(s)
Bacterias/genética , Sedimentos Geológicos/microbiología , Lagos/microbiología , Metagenoma , Microbiota/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/virología , Bacteriófagos/genética , Canadá , Variación Genética , Filogenia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...