Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(38): 11853-11858, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39265089

RESUMEN

Transition metal dichalcogenide heterostructures have garnered strong interest for their robust excitonic properties, mixed light-matter states such as exciton-polaritons, and tailored properties, vital for advanced device engineering. Two-dimensional heterostructures inherit their physics from monolayers with the addition of interlayer processes that have been particularly emphasized for their electronic and optical properties. Here, we demonstrate the interlayer coupling of the MoSe2 phonons to WSe2 excitons in a WSe2/MoSe2 heterostructure using resonant Raman scattering. The WSe2 monolayer induces an interlayer resonance in the Raman cross-section of the MoSe2 A1g phonons. Frozen-phonon calculations within density functional theory reveal a strong deformation-potential coupling between the A1g MoSe2 phonon and the electronic states of the close-by WSe2 layer approaching 20% of the intralayer coupling to the MoSe2 electrons. Understanding the vibrational properties of van der Waals heterostructures requires going beyond the sum of their constituents and considering cross-material coupling.

2.
Small ; 19(19): e2207684, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36775908

RESUMEN

Dead-end filtration is a facile method to globally align single wall carbon nanotubes (SWCNTs) in large area films with a 2D order parameter, S2D , approaching unity. Uniaxial alignment has been achieved using pristine and hot-embossed membranes but more sophisticated geometries have yet to be investigated. In this work, three different patterns with radial symmetry and an area of 3.8 cm2 are created. Two of these patterns are replicated by the filtered SWCNTs and S2D values of ≈0.85 are obtained. Each of the radially aligned SWCNT films is characterized by scanning cross-polarized microscopy in reflectance and laser imaging in transmittance with linear, radial, and azimuthal polarized light fields. The former is used to define a novel indicator akin to the 2D order parameter using Malu's law, yielding 0.82 for the respective film. The films are then transferred to a flexible printed circuit board and terminal two-probe electrical measurements are conducted to explore the potential of those new alignment geometries.

3.
ACS Nano ; 14(1): 948-963, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31742998

RESUMEN

The enantiomer-level isolation of single-walled carbon nanotubes (SWCNTs) in high concentration and with high purity for nanotubes greater than 1.1 nm in diameter is demonstrated using a two-stage aqueous two-phase extraction (ATPE) technique. In total, five different nanotube species of ∼1.41 nm diameter are isolated, including both metallics and semiconductors. We characterize these populations by absorbance spectroscopy, circular dichroism spectroscopy, resonance Raman spectroscopy, and photoluminescence mapping, revealing and substantiating mod-dependent optical dependencies. Using knowledge of the competitive adsorption of surfactants to the SWCNTs that controls partitioning within the ATPE separation, we describe an advanced acid addition methodology that enables the fine control of the separation of these select nanotubes. Furthermore, we show that endohedral filling is a previously unrecognized but important factor to ensure a homogeneous starting material and further enhance the separation yield, with the best results for alkane-filled SWCNTs, followed by empty SWCNTs, with the intrinsic inhomogeneity of water-filled SWCNTs causing them to be worse for separations. Lastly, we demonstrate the potential use of these nanotubes in field-effect transistors.

4.
ACS Nano ; 13(2): 2567-2578, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30673278

RESUMEN

An aqueous two-phase extraction (ATPE) technique capable of separating small-diameter single-walled carbon nanotubes in one, two, or at the most three steps is presented. Separation is performed in the well-studied two-phase system containing polyethylene glycol and dextran, but it is achieved without changing the global concentration or ratio of cosurfactants. Instead, the technique is reliant upon the different surfactant shell around each nanotube diameter at a fixed surfactant concentration. The methodology to obtain a single set of surfactant conditions is provided, and strategies to optimize these for other diameter regimes are discussed. In total, 11 different chiralities in the diameter range 0.69-0.91 nm are separated. These include semiconducting and both armchair and nonarmchair metallic nanotube species. Titration of cosurfactant suspensions reveal separation to be driven by the pH of the suspension with each ( n, m) species partitioning at a fixed pH. This allows for an ( n, m) separation approach to be presented that is as simple as pipetting known volumes of acid into the ATPE system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA